Gemini 2008 User Survey

Dennis Crabtree
Survey Parameters

- PIs of all 2006A – 2007B programs were identified to receive invitation to participate in survey
 - Includes SV, DS, and DD time
 - PIs filtered to remove duplicates and Gemini staff
 - NGO staff were included
- Final list of 503 PIs with their e-mail addresses
- Questions were derived with input from NGOs (Verne Smith, Stephanie Cote and Ilona Schoecting)
- Limited to 20 questions that covered various aspects of Science Operations
Survey Response Rate

- Initial e-mail sent to 503 recipients
- Returned e-mails were checked and some e-mails were updated to reflect new addresses for some that had moved; also a small culling of invalid addresses
- Second and third e-mails also had some bounces – these were not resolved
- Further checking indicated some duplicates – same person at a different institute
- Received responses from 246 PIs for a response rate of 50%
- Response rate by partner shown on next slide
Survey Numbers and Response Rate

<table>
<thead>
<tr>
<th>Partner</th>
<th>% of Survey</th>
<th>% of Response</th>
<th>Response Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argentina</td>
<td>2.7%</td>
<td>3.7%</td>
<td>69.2%</td>
</tr>
<tr>
<td>Australia</td>
<td>5.5%</td>
<td>4.9%</td>
<td>44.4%</td>
</tr>
<tr>
<td>Brazil</td>
<td>7.2%</td>
<td>9.8%</td>
<td>68.6%</td>
</tr>
<tr>
<td>Canada</td>
<td>11.1%</td>
<td>11.4%</td>
<td>51.9%</td>
</tr>
<tr>
<td>Chile</td>
<td>3.3%</td>
<td>2.8%</td>
<td>43.8%</td>
</tr>
<tr>
<td>Japan</td>
<td>1.8%</td>
<td>2.0%</td>
<td>55.6%</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>19.9%</td>
<td>20.7%</td>
<td>52.6%</td>
</tr>
<tr>
<td>United States</td>
<td>43.9%</td>
<td>40.2%</td>
<td>46.3%</td>
</tr>
<tr>
<td>University of Hawaii</td>
<td>4.5%</td>
<td>4.5%</td>
<td>50.0%</td>
</tr>
</tbody>
</table>
Observing Model Preferred

<table>
<thead>
<tr>
<th>Model</th>
<th>Preference</th>
</tr>
</thead>
<tbody>
<tr>
<td>100% queue</td>
<td>17%</td>
</tr>
<tr>
<td>90% queue/10% classical</td>
<td>28%</td>
</tr>
<tr>
<td>75% queue/25% classical</td>
<td>36%</td>
</tr>
<tr>
<td>50% queue/50% classical</td>
<td>17%</td>
</tr>
<tr>
<td>100% classical</td>
<td>2%</td>
</tr>
</tbody>
</table>
Gemini’s website provides sufficient information for me to develop my Phase I proposal

1 – Strongly agree to 5 – Strongly Disagree

Overall Agree: 77%
Gemini’s web site is well-structured and information is easy to find

1 – Strongly agree to 5 – Strongly Disagree

Overall Agree: 50%
Gemini offers competitive instrumentation for my research area

1 – Strongly agree to 5 – Strongly Disagree

Overall Agree: 58%
The instrument that I used performed as I expected or described on the Gemini web pages

1 – Strongly agree to 5 – Strongly Disagree

Overall Agree: 73%
Gemini delivered science data that met the requirements specified for my program

1 – Strongly agree to 5 – Strongly Disagree

Overall Agree: 70%
Gemini delivered a dataset that will allow me to produce a refereed publication

1 – Strongly agree to 5 – Strongly Disagree

Overall Agree: 75%
Gemini’s HelpDesk is a useful tool for obtaining support

1 – Strongly agree to 5 – Strongly Disagree

Overall Agree: 49%
Gemini’s Phase I tool (PIT) is easy to use

1 – Strongly agree to 5 – Strongly Disagree

Overall Agree: 57%
Gemini’s Phase II tool is easy to use

1 – Strongly agree to 5 – Strongly Disagree

Overall Agree: 41%
I am in favor of expanding the instrument exchange program in the future to include more facilities and/or increasing the amount of time available under the current program

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>75%</td>
</tr>
<tr>
<td>No</td>
<td>25%</td>
</tr>
</tbody>
</table>
The National Gemini Office staff checked my Phase 2 program in a reasonable timeframe

1 – Strongly agree to 5 – Strongly Disagree

Overall Agree: 87%
The Gemini Observatory staff checked my Phase 2 program in a reasonable timeframe

1 – Strongly agree to 5 – Strongly Disagree

Overall Agree: 88%
There is sufficient information on reducing Gemini data on the Gemini webpage

1 – Strongly agree to 5 – Strongly Disagree

Overall Agree: 33%
I used the Gemini iraf packages for my data reduction

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>73%</td>
</tr>
<tr>
<td>No</td>
<td>27%</td>
</tr>
</tbody>
</table>
The Gemini IRAF package I used was very good for my data reduction

1 – Strongly agree to 5 – Strongly Disagree

Overall Agree: 37%
My dataset was complete in terms of having all of the required calibration files

1 – Strongly agree to 5 – Strongly Disagree

Overall Agree: 67%
I am aware of the Gemini Science Archive

Yes 98%
No 2%
I have used the Gemini Archive (Please check all that apply)

To check for observations that may already exist 129
To download PI data 202
To download extra calibration 92
For archival research 52
Other use 13
What improvements would help you to speed up the publication of your Gemini data? (Please check as many as desired)

- Completion of my program: 91
- Better documentation: 54
- Better data reduction cookbooks: 116
- Availability of data reduction pipelines: 115
Summary of ‘Agree’ Questions

- Gemini’s website provides sufficient information for me to develop my Phase 1 proposal.
- Gemini offers competitive instrumentation for my research area.
- Gemini delivered the dataset that met the requirements stated on the Gemini website.
- Gemini’s Helpdesk is a starting point for obtaining support.
- Gemini’s Phase 1 tool (JIT) is easy to use.
- The National Gemini Office staff checked my Phase 1 proposal in a reasonable timeframe.
- The Gemini Observers’ Office staff checked my Phase 2 proposal in a reasonable timeframe.
- The Gemini/MIPS package I used was very good for my data reduction.
- The Gemini/MIPS package was complete at the time of viewing the required calibration files.

Agree

- Strongly Agree

- Agree

- Strongly Agree
Observations and Actions

1. Strong community-wide support for queue model
 – Continue with current approach of letting demand determine the balance

2. Our website contains most of the relevant information
 – Structure has improved (several comments on this)
 – More improvement probably possible – already a Band 1

3. Gemini’s instrumentation needs to be more competitive
 – F-2, GNIRS, red GMOS CCDs, MCAO
 – A++ meeting
Observations and Actions

4. Generally we deliver data that meets specification
 – Concerns over acquisition and delivery of calibration data
 – Review process for including and acquiring observations in programs

5. Users may be unaware that we will redo observations that do not meet specifications
 – Better inform our users of this policy

6. We are producing publishable data sets
 – Continue approach of completing programs

7. Helpdesk not seen as extremely useful
 – Concerns over response time will be investigated
 – Helpdesk system being upgraded in 2009
Observations and Actions

8. Usability of the observation support tools (PIT and OT) needs to be improved (especially the OT)
 – Work with NGOs to identify short-term improvements
 – Ensure that OCS2 development includes outside review and input

9. Strong support for instrument exchange program
 – Continue program and explore expansion possibilities

10. Phase II checking is done in a timely manner
 – Continue current approach
Observations and Actions

11. Lack of information on data reduction procedures
 - Add more information on data reduction to web pages
 - Ensure instrument scientists work effectively with DPDs

12. Strong majority use IRAF for data reduction but current packages are not generally seen as very good
 - Balance short-term improvements to current IRAF scripts against long-term investment in PyRAF development
 - Ensure instrument scientists work effectively with DPDs

13. Everyone (except 6 respondents) is aware of the GSA
 - Improvements to GSA usability possible
14. Users suggest that data reduction is the bottleneck for producing publications

I. Improved documentation of current software

II. Continue development of new reduction software within PyRAF

III. Pursue development “science quality” reduction pipelines following implementation of quality assurance pipelines