NIFS Data Reduction

Richard McDermid Gemini Data Reduction Workshop Tucson, July 2010

IFU Zoo: How to map 3D on 2D

IFU Techniques: Image Slicer

Pros:

- Compact design
- High throughput
- Easy cryogenics

Cons:

 Difficult to manufacture

16 x 25 pixel detector array

Rectangular Pixels

- NIFS has different (x,y) spatial sampling
- Along the slice is sampled by the detector
- Across the slice is sampled by the slicer
- Cross-slice sets spectral PSF should be sampled on ~2 pixels
- Gives rectangular spaxels on the sky

NIFS

- Near-infrared Integral Field Spectrograph
- Cryogenic slicer design
- Z,J,H,K bands, R~5,000
- One spatial setting:
 - -3"x3" FoV
 - 0.1"x0.04" sampling
- Optimized for use with AO
- Science: young stars, exo-planets, solar system, black holes, jets, stellar populations, hi-z galaxies....

Typical NIFS Observation

- 'Before' telluric star
 - NGS-AO
 - Acquire star
 - Sequence of on/off exposures
 - Same instrument config as science (inc. e.g. field lens for LGS)
- Science observation
 - Acquisition
 - Observation sequence:
 - Arc (grating position is not 100% repeatable)
 - Sequence of on/off exposures
- 'After' telluric (if science >~1.5hr)
- Daytime calibrations:
 - Baseline set:
 - Flat-lamps (with darks)
 - 'Ronchi mask' flats (with dark)
 - Darks for the arc
 - Darks for science (if sky emission to be used for wavelength calibration)

Typical NIFS Data

Arranging your files - suggestion Daycals/ - All baseline daytime calibrations YYYYMMDD/ - cals from different dates Science/ - All science data **Obj1**/ - First science object YYYYMMDD/ - First obs date (if split over >1 nights) Config/ - e.g. 'K' (if using multiple configs) LTelluric/ - telluric data for this science obs Merged/ - Merged science and subsequent analysis Scripts/

NIFS Reduction: Example scripts

- Three IRAF scripts on the web:
 - Calibrations
 - Telluric
 - Science
- Form the basis of this tutorial
- Data set:
 - Science object (star)
 - Telluric correction star
 - Daytime calibrations
- Update the path and file numbers at the top of each script
- Excellent starting point for basic reduction

Lamp Calibrations

- Three basic calibrations:
 - Flat (DAYCAL)
 - Correct for transmission and illumination
 - Locate the spectra on the detector
 - Ronchi Mask (DAYCAL)
 - Spatial distortion
 - Arc (NIGHTCAL)
 - Wavelength calibration
- Each has associated dark frames
- May have multiple exposures to co-add
- DAYCAL are approx. 1 per observation date
- NIGHTCAL are usually once per science target, but can be common between targets if grating config not changed

- Step 1: Locate the spectra
 - Mask Definition File (MDF) provides relative location of slices on detector
 - Use nfprepare to match this to the absolute position for your data:

- Offset is stored in a new image
- This exposure is then referenced in subsequent steps that need to know where the spectra are on the chip

- Step 2.1: Update flat images with offset value
- Step 2.2: Generate variance and data quality extensions
- Nfprepare is called again (once) to do both these tasks:

• Apply same process to dark frames

• Step 2.3: Combine flats and darks using gemcombine:

- Repeat for darks...
- Now have 2D images with DQ and VAR extensions. Ready to go to 3D...

Step 3.1: Extract the slices using nsreduce:

'cut' out the slices from the 2D image Apply first order wavelength coordinate

nsreduce("gn"//calflat, fl nscut+, fl nsappw+, fl vardq+, fl sky-, fl dark-, fl flat-, logfile="nifs.log")

system

Step 3.2: Create slice-by-slice flat field using nsflat:

```
nsflat("rgn"//calflat, darks="rgn"//flatdark,
 flatfile="rn"//calflat//"_sflat", darkfile="rn"//flatdark//"_dark",
 fl save dark+, process="fit", thr flo=0.15, thr fup=1.55,
 fl vardq+,logfile="nifs.log")
```

Output flat image

LOwer and UPper limits for 'bad' pixels

- Divides each spectrum (row) in a slice by a fit to the average slice spectrum, with coarse renormalizing
- Also creates a bad pixel mask from the darks

NOAO/IR	AF V2.14.1	rmcdei	rmi@teracle	s.loc	al '	Tue 17:58:	00 20-Jul-2010
func=sp	line3 ord	er-20	low rei-3	biak	n ne	i-3 niter	ate=3, grow=0
tota	Extn	Stats.	Lamps	Dark	s	Flat	MS= 219.
	no₊	section	Mean S/N	Mean	S/N	Mean S/N	
	1		12495.8 387.0	13.5	8.5	0.99 411.1	
	2		14450.7 416.2	13.8	8.7	0.99 454.6	
16000	3		13667.8 404.7	12.8	8.2	0.98 436.2	
	4		13522.8 402.6	12.0	7.8	1.00 442.3	
	5		14238.8 413.1	12.2	7.9	0,99 456,2	
	6		13951.1 408.9	11.3	7.4	0.99 450.1	
15000	7		14405.3 415.5	11.2	7.4	0.99 458.3	
	8		14238.5 413.1	11.3	7.4	0.99 454.9	
	9		14161.8 412.0	11.0	7.3	0.99 448.1	
	10		13728.8 405.6	10.5	7.0	0,99 449,1	
14000	11		13214.3 398.0	9.8	6,6	1.00 442.5	
	12		131/8.0 397.4	9.8	6.6	0.98 435.3	
	13		13819.2 407.0	10.4	<u>_</u> +0	0.99 447.5	
[]!⊗	14		13/09.8 405.4	10,6	<u>/</u> .1	1.00 450.0	
13000	15		13637.0 404.3	10.4	7.0	0.99 446.4	
	16		13439.0 401.3	10.1	6.8	1.00 444.0	
	17		12805.4 391.7	9.9	6,6	1.00 431.6	
	18		13/5/.8 406.1	10.2	6.9	0.99 449.4	
12000	19		13270.8 398.8	9.6	6.5	V.98 435.1	
	20		13613.3 403.9	9.5	6,9 C 7	0.99 443.0	
	21		13/02+/ 405+3	3,3	6./ C 0	V.33 446.1 0 00 450 C	
	22		14240.2 415.1	10.5	6.9	0.99 499.6	
11000	20		10007.0 000.4	9.4 0.4	0.4 C 4	1.00 441.0	
	24		13317.5 402.5	3.4 0.0	0,4	0.93 442.7 0.00 47C 4	1 Y'N
	20		12040+4 233+3	0 F	C 4	V.33 430.4 0 00 497 0	● ● [●] [●]
10000	20		13003.0 334.3 17960 C 700 C	04	0+4 C 4	0,30 427.0 0 99 477 C	
10000	27		10007 7 704 0	3.4 0 A	0,4 C 2	0,33 433,0 0 00 490 0	X.
	20		1191/ / 277 0	0 0	0+2 5 7	0,92,420,0	\Diamond
	20		11014*4 344*3	0+2	0+7	0.30 404.2	
0	300 1000 1300						2000

 Step 3.3: Renormalize the slices to account for slice-to-slice variations using nsslitfunction:

Final flat-field correction frame

```
nsslitfunction("rgn"//calflat, "rn"//calflat//"_flat",
    flat="rn"//calflat//"_sflat", dark="rn"//flatdark//"_dark",
    combine="median", order=3, fl_vary-, logfile="nifs.log")
```

Method to collapse in spectral Order of fit across slices

direction

- Fits a function in spatial direction to set slice normalization
- Outputs the final flat field, with both spatial and spectral flat information

NOAO/IRAF V2.14.1 rmcdermi@teracles.local Tue 18:07:42 20-Jul-2010 func=spline3, order=3, low_rej=2, high_rej=2, niterate=3, grow=0 total=69, sample=69, rejected=4, deleted=0, RMS= 71.02 Determine illumination interactively for tmpsflat7480toc[SCI,2] at bin GCALflat

Calibration 2: Wavelength Calibration

- Step 1: Repeat nfprepare, gemcombine and nsreduce -> extracted slices
- Step 2: Correctly identify the arc lines, and determine the dispersion function for each slice
 - Should run this interactively the first time through to ensure correct identification of lines and appropriate fit function
 - First solution is starting point for subsequent fits
 - Should robustly determine good solution for subsequent spectra
- Result is a series of files in a 'database/' directory containing the wavelength solutions of each slice

```
nswavelength("rgn"//arc, coordli=clist, nsum=10,
thresho=my_thresh, trace=yes, fwidth=2.0, match=-6, cradius=8.0,
fl_inter+, nfound=10, nlost=10, logfile="nifs.log")
```

Calibration 2: Wavelength Calibration

NOAO/IRAF V2.14.1 rmcdermi@teracles.local Tue 19:39:28 20-Jul-2010 func=chebyshev, order=4, low_rej=3, high_rej=3, niterate=10, grow=0 total=29, sample=29, rejected=3, deleted=0, RMS= 0.1087

Wavelength (angstroms)

Calibration 2: Wavelength Calibration Ar,Xe 20322.552 2015.70 -50001

Wavelength (angstroms)

- Need to correct for distortions along the slices, and registration between slices
- This is done using the Ronchi mask as a reference
- Analogous to wavelength calibration, but in spatial domain

NIFS: Ronchi Mask

NIFS: Ronchi Mask

Transformation to make lines straight gives geometric correction

- Step 1: Repeat nfprepare, gemcombine and nsreduce -> extracted slices
- Step 2: run nfsdist
 - Reference peaks are very regular, so easy to fall foul of aliasing when run automatically
 - Recommend running interactively for each daycal set

nfsdist("rgn"//ronchiflat, fwidth=6.0, cradius=8.0, glshift=2.8, minsep=6.5, thresh=2000.0, nlost=3, fl_int+, logfile="nifs.log")

• TIP: apply the distortion correction to the Ronchi frame itself, and check its OK

Wavelength (angstroms)

BAD....

GOOD!

Lamp Calibrations: Summary

You now have:

- 1. Shift reference file: "s"+calflat
- 2. Flat field: "rn"+calflat+"_flat"
- 3. Flat BPM (for DQ plane generation): "rn"+calflat +"_flat_bpm.pl"
- 4. Wavelength referenced Arc: "wrn"+arc
- 5. Spatially referenced Ronchi Flat: "rn"+ronchiflat

Notes:

- 1-3 are files that you need
- 4 & 5 are files with associated files in the 'database/' dir
- Arcs are likely together with science data

- Similar to science reduction up to a point:
 - Sky subtraction
 - Spectra extraction => 3D
 - Wavelength calibration
 - Flat fielding
- Then extract 1D spectra, co-add separate observations, and derive the telluric correction spectrum

- Preliminaries:
 - Copy the calibration files you will need into telluric directory:
 - Shift file
 - Flat
 - Bad pixel mask (BPM)
 - Ronchi mask + database dir+files
 - Arc file + database dir+files
 - Make two files listing filenames with ('object') and without ('sky') star in field

- Step 1.1: Run nfprepare, making use of the shift file and BPM
- Step 1.2: Combine the blank sky frames:
 - Skies are close in time
 - Use gemcombine and your list of sky frames to create a median sky
- Step 1.3: Subtract the combined sky from each object frame with gemarith

• Step 2.1: Run nsreduce, this time including the flat:

```
nsreduce("sn@telluriclist",outpref="r", flatim=cal_data//"rn"//
calflat//"_flat", fl_nscut+, fl_nsappw-, fl_vardq+, fl_sky-,
fl_dark-, fl_flat+, logfile=log_file)
```

• Step 2.2: Replace bad pixels with values interpolated from fitting neighbours

nffixbad("rsn@telluriclist",outpref="b",logfile=log_file)

```
- Uses the Data Quality (QD) plane
```

- Step 3.1: Derive the 2D spectral and spatial transformation for each slice using nsfitcoords
 - This combines the '1D' dispersion and distortion solutions derived separately from nswavelength and nsdist into a 2D surface that is linear in wavelength and angular scales
 - The parameters of the fitted surface are associated to the object frame via files in the database directory

```
nsfitcoords("brsn@telluriclist", outpref="f", fl_int+,
lamptr="wrgn"//arc, sdisttr="rgn"//ronchiflat, lxorder=3,
lyorder=3, sxorder=3, syorder=3, logfile=log_file)
```

Nsfitcoords - spectral

Nsfitcoords - spectral

Nsfitcoords - spatial

Nsfitcoords - spatial

- Step 3.2: Transform the slice images to the linear physical coordinates using nstransform
 - Uses transforms defined by nsfitcoords
 - Generates slices that are sampled in constant steps of wavelength and arcsec
- This is essentially a data-cube (even though its not a cube...)

- Can run analysis directly from this point

- Step 4.1: Extract 1D aperture spectra from the data cube
 - Use nfextract to define an aperture (radius and centre) and sum spectra within it
 - Outputs a 1D spectrum
- Step 4.2: Co-add the 1D spectra using gemcombine

Science Data

- Same preliminaries as telluric:
 - Copy database and arc+Ronchi files
 - Copy shift file, flat and BPM
 - Identify sky and object frames
- In addition, we make use of the 1D telluric
- Generally need to combine separate (and dithered) data-cubes

Science Data

- Initial steps:
 - Nfprepare as per telluric
 - Subtract sky using gemarith
 - Usually have one unique sky per object: ABAB
 - Can have ABA two science share a sky
 - Nsreduce (inc. flat field)
 - Nffixbad, nsfitcoords, nstransform
- Now have data-cube with linear physical coordinates

- Telluric spectrum is not only atmosphere, but also stellar spectrum:
 - Need to account for stellar absorption features
 - AND account for black-body continuum
- Needs some 'by-hand' steps to prepare the telluric star spectrum
 - Remove strong stellar features with splot
 - Remove BB shape with a BB spectrum

Telluric Absorption

- Alternative approach is to fit a stellar template (Vacca et al. 2003)
- Need good template
- Can use solar-type stars, but needs careful treatment...

- Finally, run nftelluric
 - Computes the normalized correction spectrum
 - Allows for shifts and amplitude scaling
 - Divides the correction spectrum through the data

Science Data: Merging

- Now have series of data-cubes:
 - No dark current or sky (sky-subtracted)
 - Spatially and spectrally linearized
 - Bad pixels interpolated over
 - No instrumental transmission (flat-fielded)
 - No atmospheric transmission (telluric-corrected)
- Need to combine the data-cubes
- Will do this in three steps:
 - Convert MEF 'cubes' to real 3D arrays
 - Determine the relative spatial origin and adapt the WCS headers
 - Use gemcube to combine the cubes

Science Data: Merging

- Use nfcube to create the 3D arrays
 - Uses interpolation to go from series of 2D slices to one rectilinear 3D array
 - Default pixel scale is 0.05"x0.05" (arrays need square pixels..)
- These cubes are easily displayed using ds9
 Load as an array, scroll through the slices
- Find a reference pixel coordinate
 - Should be easily recognizable in the cube
 - Should be common to all cubes
- Adapt the headers to reflect the common spatial axes origin
- Run gemcube

Science Data: Merging

- This approach involves (at least) one superfluous interpolation: nifcube + gemcube both interpolate
- Might be possible to use gemcube directly from transformed data, but may need wrapper (TBD: works on single slices, so can be adapted)
- Nifcube step is convenient for determining reference coordinate
- At least gives a way to combine your data at this point – stay tuned for updated documentation