
1

HERZBERG EXTENSIBLE ADAPTIVE

REAL-TIME CONTROLLER (HEART)

External Interface Definition
Document

National Research Council Canada
Herzberg Astronomy and Astrophysics
February 2021

2

Table of Contents

1. INTRODUCTION .. 55

1.1 Background .. 55

1.2 Purpose ... 55

1.3 Scope .. 66

1.4 Reference Documents .. 66

1.5 Change Record .. 66

1.6 Abbreviations ... 77

2. SUMMARY INTERFACES.. 88

3. INTERFACE SPECIFICATIONS ... 1212

3.1 Block Initialization and Configuration .. 1313

3.2 Standard Output Blocks .. 1313

3.2.1 DM Output Custom Handler Interface ... 1313

3.2.2 Tip/Tilt Output Custom Handler Interface .. 1616

3.2.3 LGS FSM Output Custom Handler .. 1717

3.2.4 Telescope Offload Output Custom Handler ... 2020

3.2.5 Externally Streamed Telemetry using Data Socket .. 2020

3.3 Standard Input Blocks .. 2121

3.3.1 Input WFS Custom Handler Interface.. 2121

3.4 Command, Status, Data and Message TCP Sockets .. 2323

3.4.1 Standard Header and Footer .. 2424

3.4.2 Standard Status Reply .. 2626

3.4.3 Downstream AO streams .. 2626

3.5 Checksum Variants .. 2727

3.6 Externally streamed telemetry .. 2727

4. COMMAND STRUCTURE, COMMANDS ... 2828

4.1 Command Structure ... 2828

4.1.1 Command Types .. 2828

4.1.2 Command Properties .. 3131

4.1.3 Standard Commands .. 3131

4.2 Command Status and State ... 3131

4.2.1 Standard States.. 3232

4.2.2 Command State Attribute ... 3232

3

4.2.3 Standard Command Status... 3333

4.3 Commands Accepted by the RTC Command Handler and Standard Commands 3434

4.3.1 mode .. 3737

4.3.2 calibBackground ... 3939

4.3.3 pipeline .. 4040

4.3.4 loopOpen ... 4141

4.3.5 loopLgsTt ... 4242

4.3.6 loopHigh ... 4343

4.3.7 loopLow.. 4444

4.3.8 offloadTcs .. 4545

4.3.9 subApMaskLgsSet.. 4646

4.3.10 filterTemporalSet .. 4747

4.3.11 loopParamReset ... 4848

4.3.12 paramConfigSave ... 4848

4.3.13 paramConfigSet.. 4949

4.3.14 dmShape .. 5050

4.3.15 ttsSet .. 5151

4.3.16 enableHrtFlags ... 5151

4.3.17 enableSrtFlags ... 5252

4.3.18 changeLoopRate .. 5353

4.3.19 dumpBuffer ... 5454

4.3.20 setTelemRecording... 5555

4.3.21 calibModePixel ... 5555

4.3.22 calibModeGrad ... 5757

4.3.23 calibModeCmd ... 5858

4.3.24 calibModeWc .. 5959

4.4 Standard Commands ... 5959

5. STATUS, NOTABLE EVENTS AND ALARMS ... 6565

5.1 Published Status .. 6868

5.1.1 Published Status Names and Description ... 6868

5.1.2 Published Status Attributes ... 7272

5.2 Subscribed Status .. 9292

5.3 Notable Events ... 9292

5.3.1 Notable Events Publishing Rate .. 9393

4

5.3.2 Notable Event Fields .. 9494

5.4 Alarms ... 9595

6. FILE FORMATS OF READ-IN FILES ... 9696

7. ADDITIONAL COMMANDS NOT YET PROMOTED .. 9797

7.1 Commands... 9898

7.1.1 algoSetLgs ... 9898

7.1.2 algoSetNgs... 9999

7.1.3 algoSetOiwfsOdgw ... 100100

7.1.4 setLgsTtCntrl .. 101101

7.1.5 lgsfFsmZero ... 102102

7.1.6 loopLgsFocus ... 102102

7.1.7 integratorControl ... 103103

7.1.8 loopLowTier0 .. 104104

7.1.9 loopLowTier1 .. 104104

7.1.10 loopLowTier2 .. 105105

7.1.11 loopLowTier3 .. 106106

7.1.12 paramConfigSetSRT ... 108108

7.2 Commands Specific to Architecture .. 108108

7.2.1 loopLgsDither ... 108108

7.2.2 loopTwfs... 109109

7.2.3 loopNgsDither .. 110110

7.2.4 offloadOiwfsPoa ... 111111

7.2.5 ngsTelDither ... 112112

7.2.6 guideStarHandOff ... 113113

7.2.7 rtsDelete... 114114

7.2.8 activateSRT.. 114114

7.3 Status .. 115115

5

1. INTRODUCTION

1.1 BACKGROUND

The Herzberg Extensible Adaptive Real-Time Controller (HEART) External Interface Definition
Document is the primary document that describes the external interfaces for all outside sources
to interact with a HEART based RTC system. It describes the connection points and their
protocols, how issue command and monitor status, and how to receive output from the various
components within the HEART system.

To assist with understanding the HEART RTC structure and where the interface points come
from, HEART uses the concept of a “block”, which is a reusable software unit from which an RTC
implementation is comprised. These block perform various specific deterministic tasks that, when
stitched together (in what is referred to as a pipeline), combine together to make an RTC. An RTC
can contain multiple pipelines through various points in the process that each provide inputs and
output to compose the overall RTC system data flow.

One common component to all HEART based RTCs are the real-time inputs and outputs required
to fulfil its role as a RTC. Unfortunately, because of the variability of needs and requirements for
RTCs, these inputs and outputs are not always the same. Yet, through the flexibility and
configurability of HEART, it provides the necessary functionality to create these inputs and output
to match any unique need. To do this, HEART not only provides standardized blocks for many of
the common inputs and outputs to RTCs, but also custom handlers to deal any unique interface.
For example, an input WFS may need custom code to accept the input from the WFS output
format. This is then translated to an expected HEART data structure. For outputs there are
standardized blocks for each type of output that will take the data (e.g. DM command vector),
which can then be translated and output for specific hardware. These types of inputs and outputs
are done at real-time speeds and, as a result, are tightly integrated with the HEART hard real-
time (HRT).

By design, the external interfaces assume that integrated systems will connect through an
Ethernet connection or GigE. But, from a HEART perspective, the type of interface with the
hardware is transparent as the connection will be handled by a custom input handler. This allows
for HEART to integrate with components of varying functionality while utilizing the custom blocks
parts of the interface blocks capabilities to help with the configuration of the connection.

The primary inputs expected to be send to HEART are in the form of pixels and centroids. The
primary outputs are Deformable Mirror (DM) commands, Tip/Tilt (TT) commands, Laser Guide
Star (LGS) Fast Steering Mirror (FSM) commands and externally streamed telemetry data.

Additional RTC inputs consist of commands and data from the AO system controller. The RTC
includes a command handler which processes the commands and data from the AO system
controller and routs it to the necessary parts of the HEART based RTC.

1.2 PURPOSE

This document will discuss how HEART handles the custom real-time inputs and outputs, it also
includes a description of the example custom handling functions contained within HEART. The
format of commands, data and messages between the RTC and the System Controller are also
described here.

This document does not describe how the custom part of the interface is written, rather it describes
the custom handler functions and how the inputs and outputs are to be handled.

6

1.3 SCOPE

This document will only address the custom handlers for inputs and outputs of HEART, also the
message format between RTC and AO System Controller.

1.4 REFERENCE DOCUMENTS

RD1 HEART Internal Interface Document

1.5 CHANGE RECORD

Revision Date Section Modifications

DRF01 2020-11-11 All JD: Initial draft

DRF02 2020-11-16 All MS: Draft revision.

REL01 2020-11-19 All Initial Release

REL02 2021-02-15 All CRD Release

7

1.6 ABBREVIATIONS

AO – Adaptive Optics

DM – Deformable Mirror

FSM – Fast Steering Mirror

GNAO – Gemini North Adaptive Optics

GVCP – GigE Vision Control Protocol

GVSP – GigE Vision Streaming Protocol

HEART – Herzberg Extensible Adaptive Real-time Controller

HRT – Hard Real-time

ICD – Interface Control Document

LGS – Laster Guide Star

N/A – Not Applicable

NGS – Natural Guide Star

OIWFS – On-Instrument Wavefront Sensor

RTC – Real-time Controller

RTS – Real-time Telemetry Storage

SRT – Soft Real Time system

TBC – This item still needs to be confirmed

TBD – This item still needs to be determined

TT – Tip/Tilt

TTS – Tip/Tilt Stage

WC – Wavefront Corrector

WFS – Wavefront Sensor

8

2. SUMMARY INTERFACES
The generic HEART RTC context diagram is shown in Figure 1. The RTC Command Handler is
the primary entry point into the HEART based RTC. It’s receives commands and reports status to
the System Controller (or any other connected client). Other outputs and inputs are embedded
within the HRT, and the External Telemetry Handler part of the storage system.

Figure 1 - HEART RTC Context Diagram

The RTC Command Handler accepts and processes commands from an externally connected
system via a TCP connection. For example, a System Controller can be used as the primary
process responsible for issuing commands and monitoring status, but the RTC Command Handler
can accept additions TCP connections to also relay status data. This communication is included
in this document.

By default, the real-time data stream interfaces between HEART HRT and external components
are expected to be through Ethernet sockets. There are block functions that provide access to
configuration information and the ability to open/close standard HEART sockets, a HEART based
RTC also provides mechanism for customized interfaces should a device or system not support
the HEART format. For example, the GigE Vision Streaming Protocol could be supported for
incoming pixel and gradient streams through customized blocks integrated into HEART. Similarly,
customization of outputs can be used to support other output device formats.

9

Figure 2 - Standard Output HEART Interface Block

Figure 2 shows the layout for a Standard HEART output interface block. Standard output devices
include:

· deformable mirror (DM) controllers,

· tip/tilt (TT) controllers,

· laser fast steering mirror (FSM) controllers,

· telescope offloading, and

· external servers to accept streamed telemetry or modal offload values.

There is a standard HEART output block for each of these types of outputs and each of these
blocks will utilize a custom handler to interact with the device. A HEART HRT block that provides
output, such as a vector of DM actuator values, would trigger the Standard HEART DM interface
block. To support the customized format of the devise, the block would, in turn, call a custom
handler to complete the communication. A custom handler (i.e. function) would take the HEART
formatted information, translate it, and send it to the DM controller in the required format (Section
3.2).

This document details the specific function parameters to each of the different types of custom
handlers. The custom handler is responsible for actually performing the output, which will be
specific to the hardware that the custom handler is communicating with. HEART HRT includes an
example custom handler, and this document includes details of how that example handler will
send data, including details on the datagram to be sent. These are included in HEART so that
those interfaces can be tested without knowing the specifics of the real hardware.

Internal
HEART Block

Standard HEART Output
Interface Block

Custom
Handler

Output
Device

RTC

10

Figure 3 - Standard Input HEART Interface Block

Figure 3 shows the layout for the Standard HEART input interface block. Inputs are generally
expected to be pixels and gradients. HEART will contain standard HEART Input interface blocks
for the different types of inputs. Much like the outputs, the input blocks will call a custom handler
(i.e. function) which will read data, perform a necessary translation, and provide it to the RTC.
Section 3.3 details the specific inputs to the custom handler. This custom handler is responsible
for performing the reading, which will be specific to the hardware that the custom handler is
communicating with. It will then prepare the received data for processing by the HRT.

For example, to handle and process pixels sent from a custom WFS, a HEART Input Interface
block that receives the WFS data as an input to the HRT would trigger any downstream block
once the pixels start arriving for a frame. This is done through the custom handler (function) that
would read the device specific input stream, store it in memory in a standard format and then use
HEART functions to inform the RTC that data is available. When reading pixels or gradients for a
given WFS exposure, it is important to not wait until all pixels (gradients) are received before
triggering the RTC to process it as this would cause a significant delay. To avoid these delays,
HEART allows the stream of pixels (gradients) to be processed as it arrives which results in an
output stream that can be processed in parallel by a subsequent HEART HRT block. It is the
custom handler is responsible for interfacing with the specific hardware and informing internal
components when it has arrived and is ready to be processed. HEART HRT includes a sample
custom handler, and this document includes details of how that sample handler will receive data,
including details on the datagram to be received. This sample handler was developed to be used
when simulating inputs and sending it into HEART. This document will detail the interfaces for
that custom handler for the different types of input interface blocks.

To support the customization of input and output buffers, HEART has the ability to read
configuration files and provide information to the block. For example, custom systems may have
specific requirements around socket port. Item’s like this can be stored as configuration that is
loaded at runtime when starting the customized blocks. Also, many custom handler functions will
require a setup function that will be called upon block creation; this setup function is used to
perform any custom functionality required upon initialization.

In the example custom handlers provided in HEART, UDP socket communication was used to
demonstrate the low latency requirements. When operating within the critical path of the RTC,
UDP packet communication is the primary choice of protocol when other means are not available
(such as inter-process or cross-system communication). UDP communication should be used
when timing constraints are critical, therefore, chosen as a good practice to follow. It is not
expected to experience significant data loss/corruption in the controlled environment such as the

Internal
HEART Block

Standard HEART Input
Interface Block

Custom
Handler

Input
Device

RTC

11

RTC system. But, when transmitting data via UDP, checksums can be utilized to validate the data
was correctly transmitted as a precautionary measure to indicate networking issues.

12

3. INTERFACE SPECIFICATIONS
This section details the HEART functions that need to be used in the custom handlers for input
and output block. It also describes what is in the example HEART custom handler to provide the
outputs and inputs, including the datagrams used for the example. It is expected that these
example custom handlers would be replaced with the interface of the real hardware, except when
that interface is being simulated. It also details the internal and external command, message, and
data formats of the command.

The following C data types are used to specify the datagrams used for HEART example data
streams.

Table 3-1- Data type descriptions

C type Description Example Uses

uint8_t 8 bit unsigned integer
Used for storing small integer values.
Also used for packed 12 bit WFS pixels;
two pixels packed per three bytes.

uint16_t 16 bit unsigned integer Default data type for raw WFS pixels.

uint32_t 32 bit unsigned integer Used for checksums and sizes.

uint64_t 64 bit unsigned integer Compact representation of timestamps.

int16_t 16 bit signed integer Status value.

float 32 bit floating point
Used for the following values: DM actuator
displacement, WFS gradients, tip/tilt,
calibrated pixels, modal offload values.

All custom handler calls returns a daoErr_t structure. If an error occurs, then errMsg is expected
to include a useful, human readable message, including an indication of what is wrong and
potentially how to resolve the error.

The structure looks like:
typedef struct
{
 const char * caller; /* origin of error message */
 daoErr_status_t status; /* status value */
 char errMsg[DAO_ERR_MSG_BUFFER_SIZE]; /* error message */
} daoErr_t;

If no error occurred, then a status value of DAO_ERR_NONE (0) is returned. If an error did occur
the value is expected to be negative. Helper macros for populating these error structures will be
provided.

Since the RTC has a latency specification, and it is expected that the custom handler functions
will not include any artificial delays, or other real-time inefficiencies. In the standard blocks that
call the custom handlers, a timestamp will be retrieve before and after the call to the custom
handler to verify that the handler is not causing undue delays.

13

3.1 BLOCK INITIALIZATION AND CONFIGURATION

Each block will have both a configuration and initialization. This provides information that would
be required in the Custom Handler Interface. That information is defined in the specific interface
ICD. The following are the types of information that may be considered:

· configuration variable to specify the checksum type within the data packets. This would
be added to the appropriate ICDs

· network type order indicating if the data streams are going to be converted to network
byte order

· data dimensions

· details of the configuration file contents are in [RD1].

3.2 STANDARD OUTPUT BLOCKS

The standard output devices for HEART are Deformable Mirror (DM) controllers, Tip/Tilt (TT)
controllers, Laser Guide Star (LGS) Fast Steering Mirrors (FSM), telescope offloading and
external computing systems which accept externally streamed telemetry (e.g. for user interfaces
or offloading low order modes to the secondary control system). There are standard blocks for
each of these devices. Each of them have custom handler interfaces, and are defined in the
following sections.

3.2.1 DM Output Custom Handler Interface

The standard HEART DM block will call a custom handler function with the following signature:

daoErr_t dmDriver(int16_t dmTarget, int numAct, const float * actVals);
This device specific custom handler function accepts a DM target specifier (dmTarget), the
number of actuators within the DM (numAct), and an array of actuator values (actValues). The
custom handler function will convert the data to the appropriate format for the hardware controller
and send it to the DM controller. During initialization of the DM block, the custom handler function
is installed as the DM output function. This allows the custom handler function to be called via a
function pointer when the DM vector computed by HEART is ready to be sent to the DM controller.

Input are:

· dmTarget: can be used by the dmDriver function to internally select the appropriate DM
device (if required).

· numAct: number of actuators values in the actVals array
· actVals: One floating point value for each actuator, in microns.

Returns:

· daoErr_t: Defined at the beginning of this section.

It is expected that the DM Controller will reject out of range position demands by holding current
position.

14

3.2.1.1 Example DM Custom Handler

The example DM Custom handler function in HEART takes the actValues and sends one or more
UDP datagrams formatted as shown in Table 3-2. It is expected that the DM controller returns a
status datagram, formatted as shown in Table 3-3 for each DM command vector (not datagram).

Table 3-2 - DM Vector Datagram Format

Size
(bytes)

Data
Type Description

2 uint16_t DM target identifier.

1 uint8_t Datagram sequence number within DM vector. The sequence
number is reset to zero for the first datagram of each DM vector.

1 uint8_t

Number of datagrams per DM vector.
The limit of 255 datagrams per DM vector is not an issue since
over 300 actuator values can be sent within a single non-jumbo
datagram.

2 uint16_t

Actuator index offset.
DM actuator index of first actuator included in datagram.
The use of 16 bit actuator indexing allows over 65000 actuators
per DM.

2 uint16_t Number of actuator values included in current datagram.

4 32 bit
integer RTC frame number.

4 * N 32 bit
floats

One floating point value for each actuator value sent.
Actuator order is dependent upon the DM controller.
Units are in microns

4 uint32_t CRC-32C checksum

The example custom handler will send one or more DM datagrams to each DM controller. The
number of datagrams is dependent upon the number of actuators and the Ethernet frame size
(i.e. depending on whether DM controller supports jumbo frames). The first six fields constitute
the header. The grey row being repeated once for each actuator value sent. Once validated and
complete, the DM controller should return a status structure as shown in Table 3-3.

Table 3-3 - DM Vector Status Datagram

Size
(bytes)

Data
Type Description

2 uint16_t DM target identifier

2 uint16_t Number of actuator values received.

15

4 uint32_t RTC frame number.

2 int16_t

Status values:
Zero: The DM vector datagram is accepted.
Positive values: No datagram was rejected but one is either

missing or received late.
Negative values: The datagram was rejected.

2 uint16_t

Actuator identifier.
If the DM vector was accepted, then this value is 0.
If an error is associated with a specific actuator, then the actuator
number is specified here.

4 uint32_t CRC32-C checksum

The following is a list of status values returned from the simulated DM Electronics.

Table 3-4 - DM Status Return Values

Status Value Description

0 Datagram for the frame was received and applied to DM.

1

The expected datagram was received (and applied) but one
additional stale datagram were also received.
Discussion: This scenario would occur if a datagram was too late
for the previous frame but then arrived before datagrams for the
current frame.
If all valid datagrams for the current frame are read then the DM
shape should be applied despite there being an extra datagram.

2 Timeout error. No datagrams were received within the expected
time.

-1 A datagram with invalid checksum was received.

-2 Incorrect target detected. The receiving DM controller does not
match the DM target identifier specified in the header.

-3 Invalid header information detected (e.g. invalid number of
actuators).

-4 Command rejected: Inter-actuator stroke limit exceeded.

-5 Command rejected: Stroke limit exceeded.

-6 Actuator failure (e.g. electrical disconnection detected).

-7 Electronics failure detected (e.g. the amplifier output does not
match command).

-8 Calibration fault: forward and inverse linearization mismatch.

-9 Inter-actuator voltage fault.

16

3.2.2 Tip/Tilt Output Custom Handler Interface

The standard HEART Tip/Tilt block will call a custom handler function with the following signature.
This device specific custom handler function accepts a Tip/tilt target specifier and will send Tip/Tilt
commands for the Tip/Tilt stage once per frame. The tipTilt_t data type contains the tip and tilt
values as float fields.

daoErr_t ttDriver(const tipTilt_t * ttCommands, tipTilt_t * ttSensors);
The custom handler function will convert the data to the appropriate format for the hardware
controller and send it to the tip/tilt controller. During initialization of the Tip/Tilt block, the custom
handler function is installed as the tip/tilt output function. This allows the custom handler function
to be called via a function pointer when the tip/tilt vector computed by HEART is ready to be sent
to the tip/tilt controller.

Input are:

· ttCommands: can be used by the ttDriver function to internally select the appropriate
Tip/Tilt device if required.

· ttSensors: Tip and tilt, one floating point value for tip and tilt, in microns.

Returns:

· daoErr_t: Defined at the beginning of this section.

It is expected that the Tip/Tilt Controller will reject out of range position demands by holding
current position.

3.2.2.1 Example Tip/Tilt Custom Handler

The example Tip/Tilt Custom handler function in HEART takes the ttSensors and sends the
UDP datagrams formatted in Table 3-6. The first field contains a non-negative frame counter.
The next two fields are the tip /tilt commands in milli-radians of mechanical tip/tilt relative to their
untilted positions.

The simple 32 bit checksum is discussed in Section 3.5. The checksum type used in the tip/tilt
datagrams will be specified as part of the tip/tilt configuration.

Table 3-5 – TTSE Command Data Format

Size
(bytes)

Data Type Description

4 uint32_t Frame number

4 float Tip command (milli-radians rotation about axis #1)

4 float Tilt command (milli-radians rotation about axis #2)

4 uint32_t Simple 32 bit checksum

For the example Tip/Tilt custom handler function, when a tip/tilt command is sent with a frame
number of zero, it is to be interpreted as a query command. The custom handler should ignore
the included tip/tilt values (these will also be zero) and simply return the current tip/tilt sensor
values in the status outlined in Table 3-6.

17

Table 3-6 - TTSE Status Data Format

Size
(bytes)

Data Type Description

4 uint32_t Frame number for received TTS command.

4 int32_t Status value (32 bit to align tip/tilt float values).

4 float Tip sensor value (milli-radians rotation about axis #1)

4 float Tilt sensor value (milli-radians rotation about axis #2)

4 uint32_t Simple 32 bit checksum

The status field can contain the status codes listed in Table 3-7.

Table 3-7- TTSE Status Values

Status Value Description

0 Tip/tilt command datagram was received and no errors were
detected.

1 A repeated or stale datagram was received.

-1 An invalid frame number was received.

-2 An invalid tip command was received

-3 An invalid tilt command was received

3.2.3 LGS FSM Output Custom Handler

The RTC will send a command for the FSMs once per AO frame. LGS centering errors are sent
to the Laser Fast Steering mirrors (FSMs) (i.e. jitter mirrors). The standard HEART LGS FSM
block will call a custom handler function with the following signature. This device specific custom
handler function is defined with the following signature:

daoErr_t lgsFsmDriver(int numFSM, int *mask, const float * lgsFsmVals);
The custom handler function will convert the data to the appropriate format for the hardware
controller and send it to the DM controller. During initialization of the LGS FSM block, the custom
handler function is installed as the LGS FSM output function. This allows the custom handler
function to be called via a function pointer when the LGS FSM vector computed by HEART is
ready to be sent to the LGS FSM controllers.

The input are:

· numFSM: number of fast steering mirrors (NFSM)
· mask: bit mask of enabled FSM
· lgsFsmVals: vector of 2 * NFSM float elements (4 bytes) ordered as follows (Ax, Ay, Bx,

By, Cx, Cy,…) and defined in a pre-configured coordinate system. A, B, C, … represent
different FSMs. Units of milli-arcseconds on the sky relative to nominal LGS position.

18

This assumes NFSM fast steering mirrors. If one or more FSM are disabled (as shown by
the mask), a value of (0.0, 0.0) will be sent for their command.

Return value:

· daoErr_t: Defined above

It is expected that the Controller will reject out of range position demands by holding the current
position.

3.2.3.1 Example LGS FSM Custom Handler

The example LGS FSM Custom handler function in HEART takes the lgsFsmVals and sends the
X/Y offset commands in UDP datagrams with the data format list in Table 3-8. The value of NFSM

is dependent upon the LGS system but HEART will support at least six LGS FSM.

If more than one FSM command is detected as invalid, then the status value returned will
correspond to one of the invalid FSM commands.

The checksum type used in the LGS FSM datagrams will be specified as part of the LGS FSM
configuration.

Table 3-8 – Laser FSM (Jitter Mirror) Command Data Format

Size (bytes) Data Type Description

4 uint32_t Frame number

2 uint16_t NFSM : Number of fast steering mirrors in system.

2 uint16_t Bit mask of enabled FSM.

Bit 0 (least significant bit) corresponds to the first FSM
in the list.

Tip/tilt values (0,0) are included even for disabled
FSM.

2 * NFSM float Vector of 2 * NFSM float elements (4 bytes) ordered as
follows (Ax, Ay, Bx, By, Cx, Cy,…) and defined in a
pre-configured coordinate system. A, B, C, …
represent different FSMs. Units of milli-arcseconds on
the sky relative to nominal LGS position.

4 uint32_t Simple 32 bit checksum

This example custom handler assumes NFSM number of fast steering mirrors. If one or more FSM
are disabled, a value of (0.0, 0.0) will be sent for their command. The first field contains a non-
negative frame counter which is incremented each time the RTC sends the FSM commands. The
Vector field contains the x/y centering errors in milli-arcseconds on the sky relative to nominal
LGS position. The final field is a simple checksum formed from the datagram contents (excluding
the checksum itself). A UDP datagram sent to the FSM with a frame number of zero is to be
interpreted as a query command (if that functionality exists). The FSM should ignore the included
x/y values (these will be zero also) and simply return the current FSM values in a status datagram
outlined below:

19

Table 3-9 - FSM Status Datagram

Size (bytes) Data Type Description

4 uint32_t Frame number for received FSM command.

4 int32_t Status value

2 uint16_t NFSM : Number of fast steering mirrors in system.

2 uint16_t Bit mask of enabled FSM.

Bit 0 (least significant bit) corresponds to the first FSM in the
list.

Tip/tilt values (0,0) are included even for disabled FSMs.

up to 48 32 bit float Vector of 2 * NFSM float elements (4 bytes) using the same
ordering as Laser FSM Command above. The use of this field
is dependent upon the functionality of the LGS FSM.

The status field can contain the status codes in Table 3-10.

Table 3-10- FSM Status Values

Status Value Description

0 LGS FSM commands were accepted without error.

-1 FSM command Ax is invalid (out of range).

-2 FSM command Ay is invalid (out of range).

-3 FSM command Bx is invalid (out of range).

-4 FSM command By is invalid (out of range).

-5 FSM command Cx is invalid (out of range).

-6 FSM command Cy is invalid (out of range).

-7 FSM command Dx is invalid (out of range).

-8 FSM command Dy is invalid (out of range).

-9 FSM command Ex is invalid (out of range).

-10 FSM command Ey is invalid (out of range).

-11 FSM command Fx is invalid (out of range).

-12 FSM command Fy is invalid (out of range).

If more than one FSM command is detected as invalid, then the status value returned will
correspond to one of the invalid FSM commands.

20

3.2.4 Telescope Offload Output Custom Handler

The RTC will send a command to the telescope at a pre-defined interval rather than every frame.
This type of offload is often sent to the Telescope Control System (TCS) and, in the case of
GNAO, the TT is sent to the Secondary Control System (SCS). The standard HEART Telescope
Offload block will call a custom handler function with the following signature:

daoErr_t telOffloadDriver(int numOffVals, const float * telOffVals);
The custom handler function will convert the data to the appropriate format for the hardware
controller and send it to the appropriate telescope offload system. During initialization of the
Telescope Offload block, the custom handler function is installed as the Telescope Offload output
function. This allows the custom handler function to be called via a function pointer when the
offload vector computed by HEART is ready to be sent to the telescope.

The input values are:

· numOffVals: number of modes in the telOffVals array
· telOffVals: telescope offload mode values.

Return value:

· daoErr_t: Defined at the beginning of this section.

It is expected that the telescope controller will reject out of range position demands by holding
current position.

3.2.4.1 Example Telescope Control Custom Handler

The example Telescope Control Custom handler function in HEART takes the tip/tilt values stored
in telOffVals and sends the commands in UDP datagrams with a data format list in Table 3-11.

Table 3-11 – Telescope Offload Command Data Format

Size (bytes) Data Type Description

4 uint32_t Number of offload modes (two in this example)

4 TBD Telescope tip/tilt offload

This example custom handler assumes the telescope offload is going to a UDP socket, not a
syncrobus.

No response is expected from sending the telescope offloads.

3.2.5 Externally Streamed Telemetry using Data Socket

The RTC will use a separate processing thread to send decimated telemetry data to a single
external device (e.g. server). The message socket communication will utilize a TCP connection.
Details of the message (MSG) format are found in Section 3.4. The external telemetry server will
accept a connection request from the telemetry client on the configured port. Only a single

21

connection is accepted at a given time. If the TCP connection is lost, the server will accept a new
connection.

The server will only send data when instructed to by the System Controller. The client reads the
header and verifies the package type and format, as defined in Section 3.4. The identifier in the
header specifies the type of data. This information is then used to cast the following data into the
appropriate structure. No explicit acknowledgment package is sent back in response.

In order to minimize timing jitter on the real-time wavefront correction, the telemetry stream does
not share a physical Ethernet device with any of the Ethernet devices used in the hard real-time
data streams. If necessary, the RTC command handler and telemetry stream can use separate
physical Ethernet devices.

The following types of data can be streamed:

· Pixel intensities, gradients, subaperatures (LGS, OIWFS)
· DM, TTS, and FSM commands
· OIWFS/NGS WFS modes

The structure of the data is shown in Table 3-12 with sizes dependent on the configuration of the
system. Data dimension are included in the header.

Table 3-12 - Data Types to be Streamed and structure

Type of data

Pixels intensities

Gradients

Subaperatures

DM commands

TTS commands

FSM Commands

Modes (OIWFS/NGS)

The decimation is configurable.

3.3 STANDARD INPUT BLOCKS

The standard input blocks are used to read either pixels or centroids. There is a standard block
for each of these devices. Each of them have custom handler interfaces and are defined in the
following sections.

3.3.1 Input WFS Custom Handler Interface

The Input WFS block calls a custom handler function to trigger the downstream block at the start
of the arriving data for a frame. The standard HEART Input WFS block will call a custom handler
function with the following signature:

daoErr_t wfsReader(uint16_t * dest, int width, int height, wfsReadout_t * progress);

22

This device specific custom handler function accepts a WFS target specifier, the dimensions of
the readout, and a progress indicator. It reads the device specific input stream, store it in memory
in a standard format and then uses HEART functions to inform the RTC when data is available.
The custom handler will be repeatedly called until the entire frame is read, repeating until the Input
WFS block is told to stop. The block configuration, available to the custom handler during
initialization, will include information such as the frame size for each frame.

The custom handler will read the pixels/gradients and put the amount of expected data into the
destination pointer location. If the incoming pixel stream does not match the dimensions, then the
reading function will read until the total amount is reached for the frame and store the data within
the provided buffer. After each data chunk is read and returned, the progress data structure is
updated by the custom handler. Once validated, or if errors occur while reading, then the
wfsReadout_t structure defined below will be returned.

The input values are:

· dest : pointer to where the data is written
· width: X number of columns read
· height: Y number of rows read
· progress: Structure that indicates progress for the frame

Returns value:

· daoErr_t: Defined above

The wfsReadout_t struct indicates the progress of the reading of the data. It includes:

· Total number of frames read (WFS frame number, increments by 1 every time the WFS
starts imaging)

· Number of pixel (gradient) values read for this frame
· Sequence number within WFS frame. The sequence number is reset to zero for the first

datagram of each WFS frame.
· Width
· Height
· Timestamp (nanoseconds since epoch) when the read started

3.3.1.1 Standard WFS Format

The WFS standard format is in an array with

· 2D image, represented as a 1D raster array
· the X/Y (0,0) location corresponding to the bottom left hand corner

3.3.1.2 Example WFS Custom Handler

The communication with a Wavefront Sensor in the custom handler can be implemented via
either a socket or using the GigE Vision Stream Protocol (GVSP). From the RTC’s perspective,
all that is required is that the data being received is translated into a the format it can understand.
The example WFS Custom handler function in HEART takes pixels/gradients and stores that into
memory where they are processed by the downstream blocks.

The example datagram format for incoming wavefront sensor pixels is shown in Table 3-13.

23

Table 3-13 – Standard WFS Pixels Datagram Format (UDP)

Size
(bytes) Data Type Description

2 uint16_t WFS source identifier

2 uint16_t Npix : Number of pixel (gradient) values included in
current datagram.

2 uint16_t Datagram sequence number within WFS frame.
The sequence number is reset to zero for the first
datagram of each WFS frame.

2 uint16_t Number of datagrams per WFS frame.

2 uint16_t Full image width in pixels (gradients).

2 uint16_t Full image height in pixels (gradients).

2 uint16_t Datagram image width in pixels (gradients).

2 uint16_t Datagram image height in pixels (gradients).

4 uint32_t Raster scan pixel (gradient) index for first pixel (gradient)
within datagram.

4 uint32_t WFS frame number

The frame number will be incremented by 1 every time the
WFS starts imaging in response to a frame trigger signal.

8 uint64_t Timestamp (nanoseconds since epoch).

2 (or 4)
* Npix

uint16_t
or float

16 bit unsigned pixels or 32 bit floats (e.g. centroids)
within datagram are sent in raster scan order.

Packed 12 bit pixels are supported which allows storing
two pixels per three bytes. These will be unpacked into
16 bit unsigned integers.

4 uint32_t 32 bit checksum

3.4 COMMAND, STATUS, DATA AND MESSAGE TCP SOCKETS

Command sockets are the primary connections dedicated to issuing commands (CMD), receiving
command acknowledgments (ACK) and command completion messages (MSG). Status sockets
are used to send and receive state and status updates (MSG, same as command completion
messages) or data messages (DAT). For these kinds of connection, the primary role is to manage
the control communication throughout the RTC system. Command sockets communicate using a

24

TCP connection and follow the communication protocol outlined below. All internal and external
command communication within the RTC will be performed using command sockets. There are
one external and three internal command connections detailed below. There are also status
connections paralleling the command connections, intended for asynchronous and/or unsolicited
messages, such as state or status changes or variable updates.

The System Controller to RTC Command Handler connection socket is the main entry point of
communication for the RTC. This is the sole control interface point that allows high level command
and control of the RTC from an external system. For the following text, the System Controller is
the Command Sender, and the RTC is the Command Receiver.

3.4.1 Standard Header and Footer

Each command, message or data package will start with a fixed length header containing meta-
data, as shown in Table 3-14

Table 3-14 - RTC Message Header

Size
(bytes)

Data Type Name Description

4 uint32_t magicNum Magic number used to verify start of
message/command.

4 uint32_t id Command (or message) identifier. This specifies
the command (or message type) but not the
parameters (message content). The interpretation
of the payload data is determined by this identifier.

4 uint32_t size Size of data payload (in bytes).

4 uint32_t runId Identifier for data instance (e.g. sequence number
within data stream).

16 timestamp time Linux time stamp (e.g. arrival time of last pixel in
image).

2 uint16_t type Type of message (i.e. command(CMD),
message(MSG), ack(ACK), data(DAT)).

2 uint16_t devNum Device number (if applicable; e.g. LGS WFS A).

2 uint16_t footer Does the message include a footer?

2 uint16_t check Type of checksum used (if footer exists).

40 Total

If required, the header is followed by a data payload and an optional footer. The format of the
optional footer is shown in Table 3-15.

25

Table 3-15 - RTC Message Footer

Size (bytes) Data Type Description

4 uint32_t Magic number used to verify end of message/command.

4 uint32_t Command (or message) identifier. This must match the
identifier in the header.

4 uint32_t 32 bit checksum (0 if no checksum).

Table 3-16, Table 3-17, and Table 3-18 list the equivalent C structs for the package header and
footer.

Table 3-16 RTC Message Magic Number (C struct)

typedef union {
char str[4];
uint32_t num;

} hrtCmd_magic_t;

Table 3-17 - RTC Message Header (C struct)

typedef struct {
 hrtCmd_magic_t magic; // "HRT" : 'H', 'R', 'T', 0

// 0x48, 0x52, 0x54, 0x00 (network byte order)
// 0x00545248 = 5526088 (Intel/AMD 32 bit value)

 int32_t cmd; // 32 bit command/message id
uint32_t payload; // size of payload in bytes
int32_t seqNum; // identifies instance of data
struct timespec timestamp; // time
int16_t msgType; // Command, Ack, Message, Data
int16_t devNum; // Specific device of given type (e.g. LGS A).
uint16_t footer; // Is a footer included?
uint16_t chksumType; // Type of checksum included in the footer?

} hrtCmd_header_t;

Table 3-18 RTC - Message Footer (C struct)

typedef struct {
 hrtCmd_magic_t magic; // "hrt" : 'h', 'r', 't', 0

// 0x68, 0x72, 0x74, 0x00 (network byte order)
// 0x00747268 = 7631464

int32_t cmd; // 32 bit command id, should match header
uint32_t checksum; // Checksum value (0 if no checksum).

} hrtCmd_footer_t;

26

A package header and any proceeding data are sent in lock step. If the size of proceeding data
is set to a non-zero value, then the receiver must read the specified number of bytes and the
footer (if applicable), before attempting to read a new package header. If the specified data size
is zero, then no additional data bytes are transmitted (no footer is sent if there is no data payload).

If any errors are detected,

· i.e. an invalid magic number was detected in the header or footer, an invalid package
type or identifier is detected, or a size mismatch between the specified and expected
size of data,

the receiver will discard the message and immediately close the socket. Both sides will then
attempt to reestablish communication.

This protocol allows for packages of different types and sizes to be sent over the same socket.

Although the commands sent by the AO system controller are specified as integer values, HEART
will contain a lookup table to allow translation between command (message or data structure)
names and numeric identifiers.

3.4.2 Standard Status Reply

Status values can be requested, subscribed to or unsubscribed to. When requesting this a reply
is sent back as shown in Table 3-19.

Table 3-19 - Standard Status request reply

 [comp].[GROUP_]status
Attribute Type Description

requestType Enum

Type of request can be to be the current
value, to subscribe to one or more status
items, or unsubscribe to those
CURRENT | SUBSCRIBE | UNSUBSCRIBE

args string
String representation of the status request
(may be a single status name, or multiple)

caller string identifier of the caller (if available)
runId int A run ID associated with the status request.

comp enum status of completion:
SUCCESS | FAILED | REJECTED

compMsg string
Completion string explaining why a command
is FAILED, or REJECTED. This string will be
empty if the command is SUCCESS.

3.4.3 Downstream AO streams

The HRT can provide pixels and DM shapes to downstream AO systems.

The data format package type (DAT) is used to transport complex data structures between
servers. The identifier (id) specifies the data type of the following data and the data size specifies

27

the data type’s size. The identifier and corresponding data type size are fixed and shared between
the two servers via a common header file.

The DAT message type will be used for downstream AO, with the only different being that it will
utilize UDP over TCP, because this is a direction connection.

3.5 CHECKSUM VARIANTS

HEART supports three distinct 32 bit checksums:

· A simple 32 bit XOR (exclusive or) checksum is currently specified for use in RTC when
sending tip/tilt values to either the tip/tilt stage electronics or the laser guide star facility
fast steering mirrors.

· A 32 bit Fletcher checksum can be used as an alternative if desires as it can quickly
calculated with a simple function. It provides better error detection than the XOR
function and is a good solution for protecting short datagrams such as those using XOR
in RTC.

· The RTC uses a more complex 32 bit CRC32C checksum for larger datagrams and
larger volumes of data such as DM actuator values and WFS pixels.

The XOR checksum was chosen since it is very trivial to implement and data errors are expected
to be very rare within the short datagrams where its use is specified.

The Fletcher checksum is simple to implement and therefore does not introduce much
development burden on the device side of the interface. It provides better error detection than the
XOR checksum (https://users.ece.cmu.edu/~koopman/pubs/maxino09_checksums.pdf).

A 16 bit (2 * 8 bit) Fletcher (using 1’s complement arithmetic) detects all two bit errors which are
separated by less than 2040 bits.

https://www.faa.gov/aircraft/air_cert/design_approvals/air_software/media/TC-14-49.pdf

https://dl.acm.org/doi/abs/10.1145/53644.53648?download=true

The more powerful CRC32C checksum was selected as an appropriate checksum during the RTC
design stages. The CRC32C checksum is widely used, is effective at detecting errors and benefits
from hardware acceleration in modern CPUs.

Regardless of which checksum is used, on the transmitting side, the checksum must be computed
after converting all multi-byte data elements in the transmission buffer into network byte order.
On the receiving side, the checksum must be computed on the received data, prior to conversion
to host byte order. For the Fletcher checksum, which performs 16 bit additions, the byte pairs
must converted to host order to allow proper 16 bit arithmetic and handling of overflow.

3.6 EXTERNALLY STREAMED TELEMETRY

There are four primary types of telemetry data that will be provided:

· State/Status Telemetry: provide System Controller with status, and other offload
values. It is a socket stream over external network. It is non/soft real-time and is
provided by the Command Handler (see Section 5 for details, including status
provided).

28

· Stored Telemetry: for engineering purposes, locally written to disk mounted by the
System Controller and is non real-time

· External Streamed Telemetry: for external displays or other applications, decimated
socket stream over external network and is soft real-time

· Downstream AO Telemetry: for downstream AO correction (e.g. GIRMOS), full-rate
socket stream over a dedicated link, and is hard real-time

4. COMMAND STRUCTURE, COMMANDS
The commands accepted by the RTC Command Handler are detailed in Section 4.3 and the
details of the structure of the command is detailed in Section 3.4. The status reported by the RTC
is detailed in Section 4.2.

4.1 COMMAND STRUCTURE

The following sections defined the different types of commands, command properties, and
discusses the standard commands that blocks and pipelines respond to.

4.1.1 Command Types

Most of the commands can be divided into three command types:

· Simple commands: Immediate type commands that cover a broad category encompassing
activities that complete in a short amount of time (e.g., setting flags, changing modes,
performing self-tests, enabling debugging features). The caller can block while awaiting the
response as it must occur within 1 second to avoid a timeout.

· Discrete commands: Submit type commands that are expected to produce a single discrete
change in the state of an assembly, possibly requiring a significant amount of time (e.g.,
moving a motorized stage between two different positions).

· Following commands: Submit type command that initiates continuous “following” of
externally generated demand streams. A typical use case is a motorized device following
continuous position demands generated by the TCS. A command completion response is
generally sent to the caller when the following device is initially on target (in some cases the
component developer may include a settling time to ensure that the completion response is
not sent until any ringing has subsided).

4.1.1.1 Simple Command

The simple command category is fairly self-explanatory, and can usually be achieved using a
blocking immediate message as shown in Figure 4.

29

Figure 4 - Simple Command Flow Diagram

Simple commands will block until complete; any subsequent command messages will be queued
within the command handler, until the simple command returns.

4.1.1.2 Discrete Command

The main difference between a simple command and discrete command is that the discrete
commands can reasonably be expected to send completion messages back to the caller after
some period of time as shown in Figure 5. Therefore, discrete commands will be sent using
submit.

30

Figure 5 - Discrete Command Flow Diagram

When a discrete command is initially received, it blocks until the acknowledgment response is
returned; any subsequent command messages during this period will be queued until the
acknowledgment is sent. After the command is accepted, the acknowledgment is sent, and the
command is executing, any subsequent command messages will be immediately checked and
either accepted or rejected. If the new incoming command is rejected, the first command
completes normally. If the new command is accepted, and the first command is pre-emptible, the

31

first command is cancelled. In the case were the first command is not pre-emptible, the new
incoming command will be rejected. If there are new commands queued, the process will repeat.

4.1.2 Command Properties

Some commands will have special properties that will dictate how they behave and how they
interact with other commands and the current commands state. The possible properties are:

· pre-emptible – a discrete command that can be interrupted by other commands
· friendly – a simple command that can be executed while another command is active, without

preempting it
· scheduled – a discrete command that is acknowledged right away, but whose execution is

delayed until a specified time.

4.1.3 Standard Commands

This section lists the standard command sets (that should then be extended on a per-component
basis), and discusses the types of activities initiated by commands. A base command set is
defined for most blocks and pipes. These are further detailed in Section 4.4.

Table 4-1 - Standard assembly command set

Name Command
Type

Block/Pipe/
Process Description

config discrete Process

Reload configuration files only, set default
conditions, etc. This command will be
triggered internally, with default parameter
as a part of the lifecycle initialization

start simple Pipe A pipe starts all blocks in its pipeline
stop simple Pipe A pipe stops all blocks in its pipeline

pause simple Pipe any loops are closed then they will be
opened and not clear any current state

resume simple Pipe
any loops that were closed and currently
open then they will be closed and not clear
any current state

destroy simple Pipe All worker threads in the Blocks are
stopped

init simple Block/Process Re-initialize all internal variables to ….. the
default ,re-read configuration files

debug simple Block/Pipe/Proc
ess

Set the logging debug level

shutdown simple Block/Pipe/Proc
ess

Stop all processes and exit

4.2 COMMAND STATUS AND STATE

32

4.2.1 Standard States

Components (such as Blocks, Pipes or Processes) will constantly publish information indicating
what they are doing, whether they are able to accept commands, and any problems that may
have occurred.

The effective state of the command handler cannot easily be represented by a single state value.
A more accurate state description can be constructed by defining the state of a component as an
N-tuple of sub-states.

This defines the component’s state in terms of N-dimensions of state-space (analogous to a state-
space model). All components will share some common sub-states (e.g. a command state) but
would have additional sub-states to fit the component’s needs.

State is reported outside the RTC via status.

4.2.2 Command State Attribute

The cmd (or command) state attribute represents the state of the component with respect to
command handling as shown in Figure 6 Note that a REJECTED command does not change the
cmd state.

Figure 6 - Command State Attribute Diagram

The four states have the following meanings:

· UNINITIALIZED: the component is not properly initialized. Generally the only command that
will be accepted in the state is init.

· READY: the component is ready to accept commands and is not processing / executing a
command, and any background operations are not active.

· BUSY: the component is currently processing / executing a command. Generally only some
commands will be accepted while in this state.

33

· CONTINUOUS: The component has accepted a continuous-type (loopClose) command and
the component is currently still in the continuous mode (i.e. taking continuous action or
periodic action such as a follow mode or tracking). This state is somewhere between ready
and busy. Generally, only some commands will be accepted while in this state.

4.2.3 Standard Command Status

Command status is not the same thing as state. Its value indicates the response to a command.
It can also be reported via status publishing.

4.2.3.1 Recent Command Status

In addition to the status of commands actively being run, another important piece of information
for a component to publish is its most recent responses to commands specific command. This is
particularly important where a chain of functions is being executed. In general, commands,
command acknowledgements, and command completion status are sent between components
using peer-to-peer connections. In order to improve debugging capabilities and to provide
information for GUIs, eavesdropping by a third party can be facilitated by publishing command
state, on a command basis. It will follow the naming convention [comp].[GROUP_]cmdStatus,
where GROUP is the command name, and comp is the name of the components.

Table 4-2 - Standard RTC command status
[comp].[GROUP_]cmdStatus
Attribute Type Description

cmd string Name of the most recent command
processed by the command handler

args string
String representation of the command
arguments.

caller string identifier of the caller (if available)
runId int A run ID associated with the command.

ack enum

initial command acknowledgement:
ACCEPTED | REJECTED

Always set to ACCEPTED for simple
commands

ackMsg string

Acknowledgement string explaining why a
command is REJECTED. This string will be
empty if the command is ACCEPTED.

Always an empty string for simple
commands.

comp enum

status of completion:
INPROGRESS | SUCCESS | FAILED |
INTERRUPTED | REJECTED

The REJECTED status only applies to
simple type commands, since they do not

34

send an acknowledgement, yet the command
may still be invalid and therefore rejected.

compMsg string

Completion string explaining why a command
is FAILED, INTERRUPTED or REJECTED.
This string will be empty if the command is
INPROGRESS or SUCCESS.

This command status is published when it changes so that information can be provided for a GUI.
When a critical failure occurs the appropriate alarms will be raised. If the critical failure was
triggered by a command, the compMsg will also report a relevant error message.

When a command is INPROGRESS and a second command attempts to preempt the command
but is rejected, either because the new command is invalid or the current command is not pre-
emptible, the component will update the ackMsg with the REJECTED and will not affect the comp
status of INPROGRESS. This provides a history of event in the event stream while maintaining
only one command active at a time.

When a command is INPROGRESS but is successfully preempted, the assembly will first update
this event item, reporting that the preempted command was INTERRUPTED, before updating it
with the new commands details (e.g., new runId).

When a command is INPROGRESS and a second friendly command is received, the component
must briefly update this event item with the friendly command’s busy and completion status and
then restore the currently active command to INPROGRESS. This provides a history of event in
the event stream while maintaining only one command active at a time.

If the ‘validate’ flag is set for a command, i.e. the assembly does not actually execute the
command, it only checks if the command is valid, then [comp].[GROUP_]cmdStatus.ack and
ackMsg are updated, meaning there is event record of ‘validate’ commands.

4.3 COMMANDS ACCEPTED BY THE RTC COMMAND HANDLER AND STANDARD COMMANDS

The following sections detail the commands accepted by HEART. As each RTC varies in it’s
capabilities and functionality, it is expected that there will be custom commands required for any
custom RTC. Those would be detailed in an interface control document that is specific for that
RTC and would augment the list below. If an RTC does not have a need for a specific standard
function, for example, if it didn’t have an NGS WFS, then any commands relevant to NGS would
be a NOOP. Standard commands that most blocks and pipelines respond to are called Standard
commands and they are detailed in Section 4.4.

The commands are sent to the Command Handler using TCP sockets described in Section 3.4.
In the message header the following information is given below in each of the tables for each of
the commands:

Table 4-3 - Command structure

Name in
RTC
Message
Header

Name in the
Command Tables
below

Description

magicNum HRT Magic number used to verify start of message/command.

35

id Command Name Command (or message) identifier. This specifies the
command (or message type) but not the parameters
(message content). The interpretation of the payload
data is determined by this identifier.

size size of the
Parameters(in)

Size of data payload (in bytes).

runId Incremented
number

Identifier for data instance (e.g. sequence number within
data stream). This is returned in the reply

time Time now Linux time stamp (e.g. arrival time of last pixel in image).

type CMD Type of message (i.e. command(CMD), message(MSG),
ack(ACK), data(DAT)).

devNum N/A Device number (if applicable; e.g. LGS WFS A).

footer No Does the message include a footer?

check N/A Type of checksum used (if footer exists).

Payload:

Format for payload is detailed in the “Parameters(in)” section of the tables below. Examples of
the payload are:

For an integer:

“-config mode.lgsEnable=6”

For an array of something:

“-config mode.lgsEnable={1, 2, 3, 4}”

For a string:

“-config calibLgsBackground.filename=a/b/c/d.fits”

The reply is in the format that follows.
Table 4-4 - Reply to a command structure

Name in
RTC
Message
Header

Name in the
Command Tables
below

Description

magicNum HRT Magic number used to verify start of message/command.

id Command Name Command that was sent

36

size size of cmdStatus
(Table 4-2)

Size of data payload (in bytes).

runId Number given
when the command
was sent

Identifier for data instance (e.g. sequence number within
data stream). This is returned in the reply

time Time now Linux time stamp (e.g. arrival time of last pixel in image).

type ACK Type of message (i.e. command(CMD), message(MSG),
ack(ACK), data(DAT)).

devNum N/A Device number (if applicable; e.g. LGS WFS A).

footer No Does the message include a footer?

check N/A Type of checksum used (if footer exists).

Payload:

cmdStatus structure (Table 4-2)

cmd Name of the most recent command processed by the
command handler

args String representation of the command arguments.

caller identifier of the caller (if available)
runId runId above A run ID associated with the command.

ack ACCEPTED initial command acknowledgement:
ACCEPTED | REJECTED

ackMsg

Empty Acknowledgement string explaining why a command is
REJECTED. This string will be empty if the command is
ACCEPTED.

Always an empty string for simple commands.

comp
status status of completion:

INPROGRESS | SUCCESS | FAILED | INTERRUPTED |
REJECTED

compMsg
String, if needed Completion string explaining why a command is FAILED,

INTERRUPTED or REJECTED. This string will be empty if
the command is INPROGRESS or SUCCESS.

37

4.3.1 mode

Description sets the AO mode of the RTC
Type simple
Command
Name

mode

Parameters (in) Field Description Type Units Requir
ed

lgsEnable If an enable flag is true then the RTC
will use the corresponding
pixel stream for high-order
correction. For NGS or SL mode, all
LGS WFSs should be disabled. The
array is ordered LGS WFS [A B C D
E F].

array[6] of boolean yes

rateHo high-order loop rate double (0.1 ≤ x ≤ 800) Hz yes

rateLo low-order loop rate double (0.1 ≤ x ≤ 800) Hz yes

rateLot low-order truth loop rate double (0.1 ≤ x ≤ 400) Hz yes

rateWc wavefront corrector loop rate double (0.1 ≤ x ≤ 800) Hz yes

ngsBin width of NGS bin in pixels enum: (1, 2, 4, 8, 16) no

ngsMode NGS mode. The array is ordered
NGS [A B C D E F G]

array[7] of enum:
(NONE, TT, TTF)

yes

tier1 Tier 1 detector. enum: (NGSA,
NGSB, NGSC,
NGSD, NGSE,
NGSF, NGSG)

tier2 Tier 2 detectors. The array is
ordered Tier 2 [A B]

array[2] of enum:
(NGSA, NGSB,
NGSC, NGSD,
NGSE, NGSF,
NGSG)

yes

tier3 Tier 3 detectors. The array is
ordered Tier 3 [A B C D]

array[4] of enum:
(NGSA, NGSB,
NGSC, NGSD,
NGSE, NGSF,
NGSG)

yes

pol indicates whether to perform pseudo
open-loop (POL) feedback

boolean yes

Parameters
(out)

38

Status values
affected

Precondition:
 state.cmd = READY
Execution:
 state.cmd = BUSY
At Completion
 state.cmd = READY
 mode.rateLo = {input rateLo}
 mode.rateLo = {input rateLo}
 mode.rateLot = {input rateLot}
 mode.rateWc = {input rateWc}
 mode.tier1 = {input tier1}
 mode.tier2[] = {input tier2}
 mode.tier3[] = {input tier3}
 mode.tier3f = {input tier3f}
 lgsState.enable[] = {input lgsEnable}
 ngsState.bin = {input ngsBin}
 ngsState.enable[] = {input ngsMode}

Action and Response

On receiving this command the RTC will deactivate the RTC pipeline, via the pipelineDeactivate
command and (re)-configure the AO mode of the RTC. This command may also (re-)established
the private communication with the SRT-RPG by creating the mode appropriate connection end-
points. Once the AO mode has been configured, the RTC will begin to listen to pixels streams
and perform pixel calibration for quick-look GUIs. However, it will not be saved or processed
further.

The command will also configure which detector input streams will be used for low-order
correction. These streams are split into tiers as listed below:

· Tier 0 (optional) NGS providing TT(FA) measurements for acquisition purposes
· Tier 1 (required) single detector that provides LO TTF(A) measurements
· Tier 2 (optional) 1 to 2 detectors that provide LO TT or LO TTF(A) measurements
· Tier 3 (optional) 1 to 4 detectors that provide LOT TT measurements
· Tier 3F (optional) single detector that provides LOT focus measurements
· The restrictions for Tier assignments are given below:

o Tier 0 can only be the NGS
o Tier 1 must be either the NGS or a TTF OIWFS
o Tier 2 can be the NGS or any TT/TTF OIWFS or ODGW
o Tier 3 can be any OIWFS or ODGW
o Tier 3F can only be a TTF OIWFS
o a single detector can be assigned to multiple tiers
o the same detector cannot be assigned to the same tier twice
o the same detector cannot be assigned to both Tier 1 and Tier 2

· For Tiers 2 and 3, the order in which the detectors are specified defines the order in
which the gradients will be assembled for low-order and low-order truth mode
reconstruction. If a tier entry is specified as NONE, then that entry is skipped while
assembling the low-order gradient vector (changes the size of the gradient vector)

39

· The wavefront corrector rate must be a multiple of the high-order loop rate and the
steady-state low-order loop rate. The steady-state low-order loop rate must be a
multiple of the steady-state low-order truth loop rate.

· Any OIWFS that is assigned to Tier 1 or Tier 3F must be set to TTF mode, while any
OIWFS that is assigned to Tier 2 or Tier 3 can be either set to TT or TTF mode. All
OIWFSs not assigned to a low-order tier must be set to the NONE mode.

· Logic:
o if {input lgsEnable[*] == false}, then loop.lgsTt[*] = INACTIVE
o if {input tier2[] != ODGW* and input tier3[] != ODGW*}, then

odgwState.enable[ODGW*] = false else odgwState.enable[ODGW*] = true
o if {input tier2[*] == NONE}, then loop.tier2[*] = INACTIVE
o if {input tier3[*] == NONE}, then loop.tier3[*] = INACTIVE
o if {input tier3f == NONE}, then loop.tier3f = INACTIVE

4.3.2 calibBackground

Description instructs the RTC to take new normalized WFS sky & instrument background and/or save the
background to the file, used for engineering purposes

Type simple
Command
Name

calibBackground

Parameters (in) Field Description Type Units Requir
ed

det Which detectors (HO or LO) HO | LO yes
avg number of frames to average integer (0 ≤ x) no.

(see
notes)

filename name of FITS file to save to string no.
(see
notes)

type This could be DARK/SKY or FLAT enum{
DARK_SKY |
FLAT }

no.
(see
notes).

Parameters
(out)
Status values
affected

Precondition:
 state.cmd = READY
 loop.ready = true
Execution:
 state.cmd = BUSY
 state.lgsBackgroud = true
At Completion:
 state.cmd = READY
 state.lgsBackgroud = false
 if {input filename not specified}, then state.unsavedLgsSky = true
 if {input filename is specified}, then state.unsavedLgsSky = false
 if {input filename is different from current LGS sky config file}, then state.unsavedConfig = true

40

Action and Response

This command applies to all enabled LGS WFSs. If the number of frames to average is specified,
then the RTC will average the specified number of frames to measure the current backgrounds
or flat. The current detector backgrounds, specified in the configuration file, are subtracted from
the measured backgrounds to produce the sky & instrument backgrounds. These sky &
instrument backgrounds are then normalized to a 1 second exposure and stored as the current
normalized LGS WFS sky & instrument backgrounds in the RTC (at which point the command
returns). For a FLAT, the frames are averaged and saved to file. Subsequent call to this command
will replace the normalized sky & instrument backgrounds and calls to the init command will reset
all backgrounds to the defaults specified in the configuration file.

If the input filename parameter is specified, then the RTC will save the current normalized sky &
instrument backgrounds to file using the configuration name given, after generating a new
backgrounds if instructed to do so (i.e. number of frames to average is specified). Note that the
configuration file will only contain the normalized sky & instrument backgrounds, and should be
different from the configuration name used by the init command.

If neither input argument is specified, then this command will return with an error.

If pixels are not received from all enabled LGS WFSs in a timely manner, then this command will
return with an error and no backgrounds will be updated or saved.

A call to the stop command will abort this process.

Discussion: It is assumed that the lasers will be detuned before executing this command so the
sky & instrument backgrounds will include Rayleigh backscattering.

4.3.3 pipeline

Description (re-)activate the RTC pipeline by starting pixel processing
Type simple
Command Name pipeline
Parameters (in) Field Description Type Units Requir

ed
enable indicates whether to enable or disable the

pipeline
boolean yes

Parameters (out)

Status values
affected

Precondition:
 state.cmd = READY
 state.mode = true
 state.SRT-RPGDate = true
Execution:
 state.cmd = BUSY
At Completion:
 state.cmd = READY
 loop.ready = true | false
 calibWc.override = false
calibDetector.pixelMode[] = STOP
 calibDetector.gradMode[] = STOP
 lgsState.algo = COG_STATIC | NONE | STOP

41

 lgsState.tt = KALMAN
 ngsState.algo = COG_STATIC | NONE
 odgwState.algo[] = COG_STATIC | NONE
 ngsState.algo[] = COG_STATIC | NONE
 ngsState.acqTable[] = false
 odgwState.acqTable[] = false
ngsState.algo[] = NONE

Action and Response

This command (re-)activates or deactivates the RTC pipeline. The activation will start pixel
processing, including gradient computation using CoG, and will flattening the DMs (via the
dmFlatten command), zero the TTS (via the ttsZero command), zero the LGS FSMs (via the
lgsfFsmZero command), and resetting integrators and filters (via the loopParamReset command).

Subsequent re-activate calls to this command will re-activate the pipeline, opening all loops (via
the loopOpen command), then reset parameters and flatten/zero controlled elements. This
command will also start saving telemetry stream to the RTS and pixel streams to the HOP servers.

Note that published control loop specific telemetry or telemetry sent directly to the SRT-RPG will
not be started with this command but will begin once the corresponding loop is closed.

If enable is set to false, then the command deactivates the RTC pipeline, i.e. stopping all closed-
loop processing (via the loopOpen command), and stopping pixel processing.

The deactivate command is intended to stop the RTC data processing, i.e. at the end of a night.
This command does not stop the RTC pipeline software but instead leaves the software in a
stand-by state whereby the RTC continues to respond to commands and the pipeline can easily
be reactivated. This command also stops the RTS and HOP servers from saving telemetry and
pixel data.

Discussion: It is anticipated that pixel reading will always occur as long as the AO mode is set; it
is therefore unaffected by this command. However, any pixels read while in this state are simply
calibrated but not stored and will not be processed further.

4.3.4 loopOpen

Description opens all control loops and offloading in the RTC
Type simple
Command Name loopOpen
Parameters (in) Field Description Type Units Requir

ed

Parameters (out)

Status values
affected

Precondition:
 state.cmd = READY
 loop.ready = true
Execution:
 state.cmd = BUSY
At Completion:

42

 state.cmd = READY
 loop.ho = IDLE
 loop.lgsFocus = IDLE
 loop.lgsDither = NONE
 loop.lgsTt[] = IDLE | INACTIVE
 loop.lo = IDLE
loop.telOffloadTt = IDLE
 loop.telOffloadFocus = IDLE
 loop.telOffloadMag = IDLE
 loop.telOffloadMode = IDLE

 if (lgsState.algo == MF_UPDATE), then lgsState.algo = MF_STATIC
 else if (lgsState.algo == MF_COG), then lgsState.algo = COG_STATIC
 if (ngsState.algo == COG_UPDATE), then ngsState.algo = COG_STATIC
 if (ngsState.algo == MF_UPDATE), then ngsState.algo = MF_STATIC
 else if (ngsState.algo == MF_COG), then ngsState.algo = COG_STATIC
 if (odgwState.algo == MF_UPDATE), then odgwState.algo = MF_STATIC
 else if (odgwState.algo == MF_COG), then odgwState.algo = COG_STATIC

Action and Response

This command opens all control loops and offloading in the RTC.

Note that this command does not reset the integrator or filter states; use the pipelineActivate or
loopParamReset command to reset those parameters.

4.3.5 loopLgsTt

Description enables or disables the LGS TT loop that sends commands to control Laser FSMs
Type simple
Command Name loopLgsTt
Parameters (in) Field Description Type Units Requir

ed
loop indicates desired state of the LGS TT

loop
enum: (OPEN,
CLOSE,
CLOSE_WO_DRI
FT)

yes

Parameters (out) state

Status values
affected

Precondition:
 state.cmd = READY
 loop.ready = true
 lgsState.enable[{at least one}] = true
Execution:
 state.cmd = BUSY
At Completion:
 state.cmd = READY
 if {input loop} = OPEN, then loop.lgsTt[] = IDLE | INACTIVEloop.lgsDriftTt = false
 if {input loop} = CLOSE, then loop.lgsTt[] != IDLEloop.lgsDriftTt = true
 if {input loop} = CLOSE_WO_DRIFT, then loop.lgsTt[] != IDLEloop.lgsDriftTt = false

43

Action and Response

This command enables or disables the LGS TT loop that sends commands to the LGSF to control
LGSF FSMs.

When the loop is set to OPEN, TT correction commands to the LGSF are not updated and the
LGS TT loop is halted. However, the if Kalman filter and integrator outputs are not reset, the FSM
will remain at their current position (however the internal Kalman filter states are reset); these
outputs can be reset via the loopParamReset command. When the loop is set to CLOSE, the LGS
TT loop is active and a TT drift terms are added to measured TT errors. When the loop is set to

CLOSE_WO_DRIFT, the LGS TT loop is active but TT drift terms are ignored.

While the LGS TT error is above the LGS FSM TT threshold (defined in the config file), the FSM
TT loop state will be set to ACQUIRE. Once the TT error has dropped below the threshold, the
FSM TT loop state will change to LOCK. If the LGS TT loop is not IDLE, an enable request will
be a no-op.

The control command will only be applied to the LGSF FSM corresponding to the enabled LGS
WFSs (lgsState.enable[]). LGSF FSMs corresponding to disabled LGS WFSs will remain in the
IDLE state and will be sent zeros.

Discussion: The acquisition of LGS TT may only take a few frames for the FSMs to move to the
correct positions and start guiding.

4.3.6 loopHigh

Description enables or disables the high-order loop which applies the high-order correction errors to the
control path

Type Simple
Command Name loopHigh
Parameters (in) Field Description Type Units Requir

ed
enable indicates whether to enable or disable the

high-order loop
boolean yes

Parameters (out)

Status values
affected

Precondition:
 state.cmd = READY
 loop.ready = true
 calibWc.override = false
Execution:
 state.cmd = BUSY
At Completion:
 state.cmd = READY
 if {input enable}, then loop.ho != IDLE
 if {input !enable}, then loop.ho = IDLE

Action and Response

This command enables or disables the high-order loop which applies the high-order correction
errors to the control path.

44

While waiting for the loop to stabilize, the high-order loop state will be set to ACQUIRE. Once the
loop has stabilized, the high-order loop state will be set to LOCK. If the high-order loop is not
IDLE, an enable request will be a no-op.

Disabling the high-order loop does not reset the correction vector stored in the main integrator; it
merely stops the high-order error vector. To reset the main integrator, use the command
loopParamReset. Note that disabling the high-order correction does not interfere with the low-
order path.

4.3.7 loopLow

Description enables or disables low-order loops using the low-order detectors, i.e. the LO TT/TTF
detectors

Type Simple
Command Name loopLowTier
Parameters (in) Field Description Type Units Requir

ed
enable indicates whether to enable or disable the

low order loop
boolean yes

Parameters (out)

Status values
affected

Precondition:
 state.cmd = READY
 loop.ready = true
 calibWc.override = false
Execution:
 state.cmd = BUSY
At Completion:
state.cmd = READY
 if {input enable}, then if {at least one mode.loOrder != NONE}, then loop.lo != IDLE, loop.tier0
= IDLE, loop.loOrder[] != IDLE
 if {input !enable}, then loop.loOrder[] = IDLE

Action and Response

This command enables or disables the low-order loop which apples low-order correction errors to
the control path from the low orderdetectors, i.e. the LO TT/TTF detectors.

Enabling this loop triggers the low order acquisition process. Once the acquisition process is
complete the state is set to LOCK.

If enabling the low order loop but the detector is inactive (mode.loworder[] = NONE), then that
detector is skipped and the corresponding loOrder state will be INACTIVE. If a loOrder detector
is already acquiring or locked, this command is a noop for that detector and will proceed to the
next loOrder detector.

If there is a handoff procedure, then that will need to be detailed in the custom command..

45

4.3.8 offloadTcs

Description enables or disables offloading to the TCS
Type simple
Command Name offloadTcs
Parameters (in) Field Description Type Units Required

m1Uncontrolled indicates whether to enable or
disable the primary mirror (M1)
uncontrolled modes offload

boolean no

telComa Telescope coma offload boolean no
telM1Figure Primary Mirror figure offload boolean no
telOffloadTt indicates whether to enable or

disable the TT telescope offloading
boolean no

telOffloadFocus indicates whether to enable or
disable the focus telescope
offloading

boolean no

telOffloadMag indicates whether to enable or
disable the magnification telescope
offloading

boolean no

Parameters (out)

Status values
affected

Precondition:
 state.cmd = READY
 loop.ready = true
Execution:
 state.cmd = BUSY
At Completion:
 state.cmd = READY
 if {input telOffloadTt} then loop.telOffloadTt != IDLEelse loop.telOffloadTt = IDLE
 if {input telOffloadFocus} then loop.telOffloadFocus != IDLEelse loop.telOffloadFocus = IDLE
 if {input telOffloadMag} then loop.telOffloadMag != IDLEelse loop.telOffloadMag = IDLE
 if {input telOffloadMode} then loop.telOffloadMode != IDLEelse loop.telOffloadMode = IDLE

Action and Response

This command enables or disables offloading to the TCS.

When enabled the RTC, it will publish various modes for the TCS (telOffloadTt, telOffloadFocus,
telOffloadMag, and/or telOffloadMode).

Disabling the TCS offloading merely stops any offloading sent to the TCS, and does not impact any
other pipeline operation.

At least one input argument must be specified.

46

4.3.9 subApMaskLgsSet

Description update LGS WFS sub-aperture mask
Type simple
Command Name subApMaskLgsSet
Parameters (in) Field Description Type Units Required

wfs LGS WFS sub-aperture mask to update enum:
(LGSWFSA,
LGSWFSB,
LGSWFSC,
LGSWFSD,
LGSWFSE,
LGSWFSF,
ALL)

yes

mask sub-aperture mask int [total # of
sub-apertures]

yes

Parameters (out)

Status values
affected

Precondition:
 state.cmd = READY
 loop.ready = true
 Execution:
 state.cmd = BUSY
At Completion:
 state.cmd = READY

Action and Response

This command updates the LGS WFS sub-aperture mask due to expected low-flux sub-aperture
and disable sub-aperture based on Rayleigh backscattering.

The mask input a mask array of length equal to the total number of sub-apertures per LGS WFS
if a specific WFS is selected by the wfs input. However if the wfs input specified as ALL, then the
input mask array must be the total number of sub-apertures for all LGS WFS order as mask values
for LGS WFS [A, B, C, …].

47

4.3.10 filterTemporalSet

Description update the HO and/or LO temporal filters
Type Simple
Command Name filterTemporalSet
Parameters (in) Field Description Type Units Required

hoOrder Order of the HO temporal filter int no (see
below)

hoNumer HO temporal filter numerator float
[hoOrder+1]

no (see
below)

hoDenom HO temporal filter denominator float
[hoOrder+1]

no (see
below)

loOrder Order of the LO temporal filter int no (see
below)

loNumMod
es

The number of LO modes int no (see
below)

loNumer LO temporal filter numerator for each
LO mode

float
[loOrder+1]
[loNumModes]

no (see
below)

loDenom LO temporal filter denominator for each
LO mode

float
[loOrder+1]
[loNumModes]

no (see
below)

Parameters (out)

Status values
affected

Precondition:
 state.cmd = READY
 loop.ready = true
 Execution:
 state.cmd = BUSY
At Completion:
 state.cmd = READY

Action and Response

This command updates the HO and/or LO temporal filters.

If the hoOrder is specified then the hoNumer and hoDenom input must also be specified as a set
and vice versa. The same is true for the loOrder, loNumModes, loNumer and loDenom input set.
Additionally at least one of the HO filter and LO filter input value sets must be specified.

The HO and LO filter order, and number of LO modes must agree with respective values specified
in the configuration file.

48

4.3.11 loopParamReset

Description reset one or more loop parameters (calibration)
Type simple
Command Name loopParamReset
Parameters (in) Field Description Type Units Required

enable Name or name prefix of the loop
parameter to reset. Passing an empty
string will reset all loop parameters.

string yes

Parameters (out)

Status values
affected

Precondition:
 state.cmd = READY
 loop.ready = true
Execution:
 state.cmd = BUSY
At Completion:
 state.cmd = READY

Action and Response

This command will reset one or more loop parameters. (calibration)

If a parameter name prefix is specified, any parameter with the matching name prefix will be reset.
Passing an empty string will reset all loop parameters. The list of all possible loop parameters that
will be reset by this command are:

· wc_int - wavefront corrector integrator (= 0)
· wc_tt_lpf - TTS filter states (= 0)
· wc_tel_lpf - Telescope offload high-pass filter states (= 0)
· ho_psd - High-order PSD & WFE (discard gathered statistics)
· ho_turb - turbulence parameters (discard gathered statistics)
· lo_mode_hpf - low-order (Tier 1 & 2) high-pass filter states (= 0)
· lo_mode_lpf - low-order truth (Tier 3 & 3F) low-pass filter states (= 0)
· lo_psd - Low-order PSD & WFE (discard gathered statistics)
· lgs_tt_int - LGSF FSM integrator (= 0)
· lgs_tt_psd - LGS TT PSD (discard gathered statistics)

4.3.12 paramConfigSave

Description tells the RTC to save the current parameter configuration to specified parameter
configuration file.

Type simple
Command Name paramConfigSave
Parameters (in) Field Description Type Units Required

config Name of the configuration file to save the
current parameters to.

string yes

49

Parameters (out)

Status values
affected

Precondition:
 state.cmd = READY
Execution:
 state.cmd = BUSY
At Completion:
 state.cmd = READY
 state.unsavedConfig = false

4.3.13 paramConfigSet

Description tells the RTC to set the value of any configuration parameter, i.e. overriding a parameter that
is specified in the parameter configuration file.

Type simple
Command Name paramConfigSet
Parameters (in) Field Description Type Units Required

param Configuration parameter identifier string no
value New value for the specified parameter as

a string
string no

file Full path to the file that contains the new
data for the specified parameter

string yes

Parameters (out)

Status values
affected

Precondition:
 state.cmd = READY
 loop.ready = false
Execution:
 state.cmd = BUSY
At Completion:
 state.cmd = READY
 state.unsavedConfig = true

Action and Response

This command tells the RTC to set the value of a configuration parameter, i.e. a parameter that is
specified in the parameter configuration file. (calibration)

This command is intended for constructing a new parameter configuration file as well as for
engineering and debugging purposes. The RTC will update the specified parameter, either by value
or loading a file that contains the new value. The file format is dependent on the parameter
specified. Note the new parameter is not automatically saved to the configuration service and will
be lost if the init command is called. To signal this condition, the unsaved parameter flag is set. To
save the current configuration, use the paramConfigSave command.

Exactly one of the value or file arguments must be specified. Consequently the required argument
will be set based on the parameter identifier (i.e. smaller parameters must use value while larger
parameters must use file).

50

4.3.14 dmShape

Description Applies a shape to the selected DM or writes the DM shape to file
Type simple
Command Name dmShape
Parameters (in) Field Description Type Units Required

dm DM or DM’s to apply the command to enum: (DM0,
DM1, DM2,
DM0_and_DM
1_and_DM2)

yes

shape What shape to assume – options are
apply an offset from a file, apply a shape
from a file, set to zero volts, set to system
flat. Or a request to write a shape to file

enum:
{SET_OFFSE
T_USE_FILE,
SET_SHAPE_
USE_FILE,
SET_ZERO,
SET_SYS_FL
A,
STORE_SHA
PE_TO_FILE,
T}

yes

file Name of file (include path) to read in or
write to

string See
notes.

Parameters (out)

Status values
affected

Precondition:
 state.cmd = READY
 loop.ready = true
 loop.ho = IDLE
 loop.lo = IDLE
 calibWc.override = false
Execution:
 state.cmd = BUSY
At Completion:
 state.cmd = READY
dmShapeSet = shape input value
dmShape_File = fileName

Action and Response

This command applies a shape to the selected DM or writes a shape to a DM. This can apply an
offset from a file, apply a shape from a file, result in a flat mirror, set to zero volts, or set to system
flat. Or a request to write a DM shape to file.

A SYSTEM input corresponds to sending the system flat, as specified by the SRT-RPG, will be
sent to the DM. A MIRROR input corresponds to sending a zero command to the DM, while a
VIRGINIZE input means a decaying sinusoid is applied to the DM, result in a flat mirror. A NONE
input means the DM will not be moved. This command is rejected if either the high- or low-order
loops are closed, or if the DMs are in the override calibration mode.

If both inputs are set to NONE, then this command is no-op and will return a warning.

51

4.3.15 ttsSet

Description sends a system zero or mirror zero or actuator command to the TTS
Type simple
Command Name ttsZero
Parameters (in) Field Description Type Units Required

tts TTS zero command enum:
(SYSTEM,
MIRROR,
MANUAL)

yes

actVal Actuator values to apply for Manual mode float[2] See
notes.

Parameters (out)

Status values
affected

Precondition:
 state.cmd = READY
 loop.ready = true
 loop.ho = IDLE
 loop.lo = IDLE
 calibWc.override = false
Execution:
 state.cmd = BUSY
At Completion:
 state.cmd = READY
 ttSet[2] = actuator values sent

Action and Response

This command sends a system zero, mirror zero, or actuator values to the TTS.

A MIRROR input corresponds to sending a raw zero command to the TTS, meaning the stage is
zeroed with respect to physical unit rotation relative to its mount as specified by the configuration
file. A SYSTEM input means the system zero position, as specified by the configuration file, will be
sent to the TTS. This corresponds to the position of the TTS that nominally aligns the system. In
MANUAL mode, it will set the actuator values on the TTS. This command is rejected if either the
high- or low-order loops are closed, or if the TTS is in the override calibration mode.

4.3.16 enableHrtFlags

Description Enables or disables HRT inputs, outputs, or corrections
Type simple
Command Name enableHrtFlags
Parameters (in) Field Description Type Units Required

enable indicates whether to enable or disable the
internal flag

enum: (start,
stop, pause,
resume,
reset)

yes

field Indicates the flag String yes

52

Parameters (out)

Status values
affected

Precondition:
 state.cmd = READY
 loop.ready = false
Execution:
 state.cmd = BUSY
At Completion:
 state.cmd = READY

Action and Response

This command sends an enable or disable of the affected internal flags for engineering purposes.
Examples are:

· setNgsCentroidingErr Enable/disable NGS centroiding error corrections
· setNgsFieldRotOffset Enable/disable NGS Field Rotation corrections to the System

Controller
· setTipTiltOutput Enable/disable TTS output
· setAveTTtoSCS Enable/disable the average tip tilt corrections to the Secondary

Control Mirror
· setNgsFieldDist Enable/disable the sending of field distortion modes to the high

order loop
· setLgsFocusErrors Enable/disable the sending of LGS Focus errors to the System

Controller from the SFS WFS
· setLgsHoWfs Enable/disable using LGS WFS for HO calculations
· setLgsCenteringErr Enable/disable the sending of LGS Centering errors to the Laser

Fast Steering Mirrors
· setComaFocus Enable/disable the sending of coma and focus corrections to the

System Controller for the Secondary Control System.
· setPrimaryFigure Enable/disable the sending of primary mirror figure corrections to

the RTC System Controller
· setLoIntegrators Enable/disable/reset LO Integrator
· setHoIntegrators Enable/disable/reset HO Integrator
· loLoopCtrl LO Pipeline loop control (start, stop, pause, resume, reset)
· hoLoopCtrl HO Pipeline loop control (start, stop, pause, resume, reset)

4.3.17 enableSrtFlags

Description Enables or disables SRT optimization inputs, outputs, or corrections
Type simple
Command Name enableSrtFlags
Parameters (in) Field Description Type Units Required

enable indicates whether to enable or disable the
internal flag

enum: (start,
stop, pause,
resume,
reset)

yes

53

period period at which new optimization
parameters should be generated.

float secon
ds

yes

field Indicates the flag String yes
gsMag Guide star magnitudes Int yes

Parameters (out)

Status values
affected

Precondition:
 state.cmd = READY
 loop.ready = false
Execution:
 state.cmd = BUSY
At Completion:
 state.cmd = READY

Action and Response

This command sends an enable or disable of the affected SRT internal. Examples are that will
enable statistic gathering enable/disable:

· gradient optimization,
· weight optimization,
· loop gains

It will also enable/disable the creating of the SRT-RPG to create a set of control matrices
based on the current configuration. After the new batch of statistics are send from the HRT
to SRT-RPG, new control matrices are computed by SRT-RPG and send back to the HRT.

:

4.3.18 changeLoopRate

Description Changes the loop rates on the fly
Type simple
Command Name changeLoopRate
Parameters (in) Field Description Type Units Required

rateHo high-order loop rate double (0.1 ≤
x ≤ 800)

Hz yes

rateLo low-order loop rate double (0.1 ≤
x ≤ 800)

Hz yes

rateLot low-order truth loop rate double (0.1 ≤
x ≤ 400)

Hz no

Parameters (out)

Status values
affected

Precondition:
 state.cmd = READY
 loop.ready = true
Execution:
 state.cmd = BUSY
At Completion:

54

 state.cmd = READY
mode.rateLo = {input rateLo}
 mode.rateLo = {input rateLo}
 mode.rateLot = {input rateLot}

Action and Response

This command changes the loop rates, assuming the loop is already closed. It also assumes the
System Controller will change the WFS rate at the same time as this is called. It also assumes
the System Controller will previously adjust any gains required to make sure the loop does not
become unstable. It is expected that the loop(s) will take some time to re-settle. During this time
the notable event (discussed in Section 5.3) will be muted to avoid spamming alert messages due
to the potential change in flux, which could result in a delay in frames (if this is a reduction in the
loop rate).

This will inform the SRT to create a new control matrix, and will tell the optimizations and PSD
calculations to restart.

4.3.19 dumpBuffer

Description Dump circular buffer data to file (for engineering purposes)
Type simple
Command Name dumpBuffer
Parameters (in) Field Description Type Units Required

name Circular Buffer name string yes

interval Internal to dump int secon
ds

no

file Filename string no
Parameters (out)

Status values
affected

Precondition:
 state.cmd = READY
 loop.ready = true
Execution:
 state.cmd = BUSY
At Completion:
 state.cmd = READY

Action and Response

Write to file (or use a default filename) the buffer selected. If an interval is not provided then dump
all of the buffer. The interval is the amount backwards from the current circular buffer.

55

4.3.20 setTelemRecording

Description Enable/disable the writing of stored telemetry
Type simple
Command Name setTelemRecording
Parameters (in) Field Description Type Units Required

enable indicates whether to enable or disable the
writing of stored telemetry to file

boolean yes

Parameters (out)

Status values
affected

Precondition:
 state.cmd = READY
 loop.ready = true
Execution:
 state.cmd = BUSY
At Completion:
 state.cmd = READY

Action and Response

Enable/disable the writing of stored telemetry streams to disk. Reading of circular buffers into
stored telemetry files. This may not be required if telemetry is always stored.

4.3.21 calibModePixel

Description Sets which averaged raw pixel data are sent directly to the SRT-RPG for calibration purposes
Type simple
Command Name calibModePixel
Parameters (in) Field Description Type Units Requir

ed
detector indicates which detector pixel calibration mode

to set.
enum:
(LGSWFS ,
ODGW, OIWFS,
NGSWFS, ALL)

yes

mode raw pixel calibration mode enum: (STOP,
SINGLE,
CONTINUOUS,
WC_SYNC)

yes

avg the number of pixel frames to average before
sending to the SRT-RPG. This argument must
be specified only when the mode is set to
SINGLE, CONTINUOUS or WC_SYNC.

integer (1 ≤ x) #Pixe
l
frame
s

no

delay the number of pixel frames to delay (skip)
before starting to average pixel frames after a
WC override command has been applied. This
argument must be specified only when the

integer (0 ≤ x) #Pixe
l
frame
s

no

56

mode is set to WC_SYNC. If an additional WC
override command is received and applied
before this delay time has elapsed, then the
delay counter is reset. If a WC override
command is not received after the mode is set
to WC_SYNC or the WC override commands
are disabled, then no averaged pixels will be
returned.

Parameters (out)

Status values
affected Precondition:

state.cmd = READY

loop.ready = true

Execution:

state.cmd = BUSY

At Completion:

state.cmd = READY

calibDetector.pixelAvg[{input detector}] = {input avg}

calibDetector.pixelMode[{input detector}] = {input mode}

calibDetector.pixelDelay[{input detector}] = {input delay}

Action and Response

This command sets which raw pixel data is sent directly to the SRT-RPG for calibration purposes.

In CONTINUOUS mode the RTC will continually stream (averaged) pixel frames to the SRT-RPG.
The STOP mode will stop pixel frames from being sent to the SRT-RPG. The SINGLE mode will
only send the next (averaged) pixel frame to the SRT-RPG. At this point, the pixel mode is reset
to STOP. In the WC_SYNC mode, the average process will be delayed by the specified number
of pixel frames after a WC override command has been applied. If an additional WC override
command is received and applied before this delay has elapsed, then the delay is reset.

The raw pixel averages value indicates the number of frames that will be averaged before the
frame is sent to the SRT-RPG.

57

4.3.22 calibModeGrad

Description sets which averaged gradients are sent directly to the SRT-RPG for calibration purposes
Type simple
Command Name calibModeGrad
Parameters (in) Field Description Type Units Requir

ed
detector indicates which detector gradient calibration

mode to set.
enum:
(LGSWFS ,
ODGW, OIWFS,
NGSWFS, ALL)

yes

mode gradient calibration mode enum: (STOP,
SINGLE,
CONTINUOUS,
WC_SYNC)

yes

avg the number of gradient to average before
sending to the SRT-RPG. This argument must
be specified only when the mode is set to
SINGLE, CONTINUOUS or WC_SYNC.

integer (1 ≤ x) #Pixe
l
frame
s

no

delay The number of gradients to delay (skip) before
starting to average gradient frames after a WC
override command has been applied. This
argument must be specified only when the
mode is set to WC_SYNC. If an additional WC
override command is received and applied
before this delay time has elapsed, then the
delay counter is reset. If a WC override
command is not received after the mode is set
to WC_SYNC or the WC override commands
are disabled, then no averaged gradients will
be returned.

integer (0 ≤ x) #Pixe
l
frame
s

no

Parameters (out)

Status values
affected

Precondition:
state.cmd = READY
loop.ready = true
Execution:
state.cmd = BUSY
At Completion:
state.cmd = READY
calibDetector.gradAvg[{input detector}] = {input avg}
calibDetector.gradMode[{input detector}] = {input mode}
calibDetector.gradDelay[{input detector}] = {input delay}

Action and Response

This command sets which averaged gradients are sent directly to the SRT-RPG for calibration
purposes.

58

This command works similarly to calibModePixel command, except instead of operating on raw
pixels, this command operates on gradients. This command will average the gradients from the
specified detector and then sending that average to the SRT-RPG.

4.3.23 calibModeCmd

Description sets what averaged DM and TTS commands are sent directly to the SRT-RPG for calibration
purposes

Type simple
Command Name calibModeCmd
Parameters (in) Field Description Type Units Requir

ed
wc indicates which wavefront corrector command

calibration mode to set.
enum:
(DM0 DM11 TTS
ALL)

yes

mode command calibration mode enum: (STOP,
SINGLE,
CONTINUOUS,
WC_SYNC)

yes

avg Number of command frames to average
before sending to the SRT-RPG. This
argument must be specified only when the
mode is set to SINGLE, CONTINUOUS or
WC_SYNC.

integer (1 ≤ x) no

Parameters (out)

Status values
affected

Precondition:
state.cmd = READY
loop.ready = true
calibWc.override = false
Execution:
state.cmd = BUSY
At Completion:
state.cmd = READY
calibWc.avg[{input wc}] = {input avg}
calibWc.mode[{input wc}] = {input mode}

Action and Response

This command sets what averaged DM and TTS commands are sent directly to the SRT-RPG.
This command is intended for system flat calibration purposes.

This command works similarly to calibModePixel command, except instead of operating on raw
pixels, this command operates on DM and TTS commands. This command will average the
command sent to either the DM and TTS and then send that average to the SRT-RPG.

59

4.3.24 calibModeWc

Description puts the RTC wavefront controller into a calibration mode where the DMs and TTS can be
adjusted directly by the SRT-RPG

Type simple
Command Name calibModeWc
Parameters (in) Field Description Type Units Requir

ed
enable enable or disable override commands

from the SRT-RPG
boolean yes

Parameters (out)

Status values
affected

Precondition:
state.cmd = READY
loop.ready = true
loop.ho = IDLE
loop.lo = IDLE
Execution:
state.cmd = BUSY
At Completion:
state.cmd = READY
calibWc.override = {input enable}
if {input enable == true}, then calibWc.mode[] = STOP

Action and Response

This command puts the RTC wavefront controller into a calibration mode where the DMs and TTS
can be adjusted directly by the SRT-RPG.

This command is intended for calibration purposes. While performing this calibrate override mode,
the DMs and TTS are not updated by their normal path in the RTC pipeline, but instead they listen
for update streams directly from the SRT-RPG. While not in calibrate override mode, any WC
override command from the SRT-RPG is ignored. This command will be rejected if the high or
low-order loops are closed.

4.4 STANDARD COMMANDS

This section details the standard commands that are passed directly from the Command Handler
to the pipeline and block.

60

4.4.1.1 config

Description Reload configuration files

Type simple
Command Name config
Parameters (in) Field Description Type Units Requir

ed
destin This can be sent to a process,

pipeline or block
string no

file This is an optional file to specify string no
Parameters (out)

Status values
affected Precondition:

 state.cmd = READY
 loop.ho = IDLE
 loop.lgsFocus = IDLE
 loop.lgsDither = NONE
 loop.lgsTt[] = IDLE | INACTIVE
 loop.lo = IDLE
 loop.oiwfsPoa[] = IDLE

Execution:

state.cmd = BUSY

At Completion:
state.cmd = READY

Action and Response

On receiving this command the RTC will (re)read the default configuration file or, if a filename is
supplied (and it exists), then that file will be used instead. If the destin input indicates a specific
destination, then only the keywords in the file applicable to the selected block, pipeline or process
will be re-read. Otherwise the command handler will update all blocks, pipelines, or processes.

4.4.1.2 start

Description Starts all blocks in a pipeline
Type simple
Command Name start
Parameters (in) Field Description Type Units Requir

ed
destin pipeline string yes

Parameters (out)

Status values
affected Precondition:

 state.cmd = READY
 loop.ho = IDLE

61

 loop.lgsFocus = IDLE
 loop.lgsDither = NONE
 loop.lgsTt[] = IDLE | INACTIVE
 loop.lo = IDLE
 loop.oiwfsPoa[] = IDLE

Execution:

state.cmd = BUSY

At Completion:
state.cmd = READY

Action and Response

On receiving this command the RTC will (re)start all blocks in that pipeline.

4.4.1.3 stop

Description This command will open all loops, via the loopOpen command, and abort the processing of
an active submitted command.

Type simple
Command Name stop
Parameters (in) Field Description Type Units Requir

ed
detain pipeline string no

Parameters (out)

Status values
affected Precondition:

state.cmd = READY

loop.ready = true

Execution:

state.cmd = BUSY

At Completion:
state.cmd = READY

Action and Response

If nothing is currently active, then nothing will be done. If the destin specifies a pipeline, then the
pipeline will stop all blocks it contains.

62

4.4.1.4 pause

Description If any loops are closed then they will be opened and retain their current state
Type simple
Command Name pause
Parameters (in) Field Description Type Units Requir

ed
destin This can be sent to a process,

pipeline or block
string yes

Parameters (out)

Status values
affected Precondition:

 state.cmd = READY
 loop.ho = IDLE
 loop.lgsFocus = IDLE
 loop.lgsDither = NONE
 loop.lgsTt[] = IDLE | INACTIVE
 loop.lo = IDLE
 loop.oiwfsPoa[] = IDLE

Execution:

state.cmd = BUSY

At Completion:
state.cmd = READY

Action and Response

On receiving this command the RTC will, any loops that are closed will be opened and any current
state, circulr buffer, etc. will not be cleared.

4.4.1.5 resume

Description If any loops are opened by the pause command then they will be closed using their current
state

Type simple
Command Name resume
Parameters (in) Field Description Type Units Requir

ed
destin This can be sent to a process,

pipeline or block
string yes

Parameters (out)

Status values
affected Precondition:

 state.cmd = READY
 loop.ho = IDLE
 loop.lgsFocus = IDLE

63

 loop.lgsDither = NONE
 loop.lgsTt[] = IDLE | INACTIVE
 loop.lo = IDLE
 loop.oiwfsPoa[] = IDLE

Execution:

state.cmd = BUSY

At Completion:
state.cmd = READY

Action and Response

On receiving this command the RTC will, any loops that were opened by the pause command will
be closed using any current state, circular buffers, etc.

4.4.1.6 destroy

Description All worker threads in the specified Blocks are stopped

Type simple
Command Name destroy
Parameters (in) Field Description Type Units Requir

ed
destin This can be sent to a pipeline or block string yes

Parameters (out)

Status values
affected Precondition:

 state.cmd = READY
 loop.ho = IDLE
 loop.lgsFocus = IDLE
 loop.lgsDither = NONE
 loop.lgsTt[] = IDLE | INACTIVE
 loop.lo = IDLE
 loop.oiwfsPoa[] = IDLE

Execution:

state.cmd = BUSY

At Completion:
state.cmd = READY

Action and Response

On receiving this command, the RTC will stop the worker threads in either all blocks in the
specified pipeline or the specified block.

64

4.4.1.7 init

Description Re-initialize

Type simple
Command Name init
Parameters (in) Field Description Type Units Requir

ed
destin This can be sent to a process,

pipeline or block
string

Parameters (out)

Status values
affected Precondition:

 state.cmd = READY
 loop.ho = IDLE
 loop.lgsFocus = IDLE
 loop.lgsDither = NONE
 loop.lgsTt[] = IDLE | INACTIVE
 loop.lo = IDLE
 loop.oiwfsPoa[] = IDLE

Execution:

state.cmd = BUSY

At Completion:
state.cmd = READY

Action and Response

On receiving this command, the RTC will (re)initialized the selected block, pipeline or process.
This will also re-read the configuration file.

4.4.1.8 debug

Description Set the debug level on the block/pipe or process

Type simple
Command Name config
Parameters (in) Field Description Type Units Requir

ed
level Set debugging to this level enum {} yes
destin This can be sent to a process,

pipeline or block
string

Parameters (out)

Status values
affected Precondition:

 state.cmd = READY
 loop.ho = IDLE
 loop.lgsFocus = IDLE

65

 loop.lgsDither = NONE
 loop.lgsTt[] = IDLE | INACTIVE
 loop.lo = IDLE
 loop.oiwfsPoa[] = IDLE

Execution:

state.cmd = BUSY

At Completion:
state.cmd = READY

Action and Response

On receiving this command the RTC will set the debug level for the selected block, pipeline or
process.

4.4.1.9 shutdown

Description Shutdown software

Type simple
Command Name shutdown
Parameters (in) Field Description Type Units Requir

ed
destin This can be sent to a process string yes

Parameters (out)

Status values
affected Precondition:

 state.cmd = READY
 loop.ho = IDLE
 loop.lgsFocus = IDLE
 loop.lgsDither = NONE
 loop.lgsTt[] = IDLE | INACTIVE
 loop.lo = IDLE
 loop.oiwfsPoa[] = IDLE

Execution:

state.cmd = BUSY

At Completion:
state.cmd = READY

Action and Response

On receiving this command the RTC will send a command to shutdown this specified software
process.

5. STATUS, NOTABLE EVENTS AND ALARMS

66

Status can be subscribed to, or published. The request to subscribe uses TCP sockets described
in Section 3.4. In the message header the following information is given below in each of the
tables for each of the status variables. Once subscribed the data format will be MSG.

Table 5-1 - Status request structure

Name in
RTC
Message
Header

Values Description

magicNum HRT Magic number used to verify start of message/command.

id SUBSCRIBE |
UNSUBSCRIBE

Message identifier. This specifies the message type.
The interpretation of the payload data is determined by
this identifier.

size size of the payload Size of data payload (in bytes).

runId Incremented
number

Identifier for data instance (e.g. sequence number within
data stream). This is returned in the reply

time Time now Linux time stamp (e.g. arrival time of last pixel in image).

type MSG Type of message (i.e. command(CMD), message(MSG),
ack(ACK), data(DAT)).

devNum N/A Device number (if applicable; e.g. LGS WFS A).

footer No Does the message include a footer?

check N/A Type of checksum used (if footer exists).

Payload:

Format for payload is:

If only the current value is requested then:

-current <<<put in status name here, listed in Table 5-4 the “Status Name” column>>>

To subscribe to the status and get values back:

-subscribe << Put in put in a comma separated list of status name here, listed in Table 5-4 the
“Status Name” column >>>

-unsubscribe ALL | << Put in put in a comma separated list of status name here, listed in Table
5-4 the “Status Name” column >>>

The reply is in the format that follows.

67

Table 5-2 - Status request reply structure

Name in
RTC
Message
Header

Name in the
Command Tables
below

Description

magicNum HRT Magic number used to verify start of
message/command.

id SUBSCRIBE |
UNSUBSCRIBE

Message identifier. This specifies the message type.
The interpretation of the payload data is determined by
this identifier.

size size of the payload Size of data payload (in bytes).

runId Number given
when the request
was sent

Identifier for data instance (e.g. sequence number within
data stream). This is returned in the reply

time Time now Linux time stamp (e.g. arrival time of last pixel in image).

type ACK Type of message (i.e. command(CMD),
message(MSG), ack(ACK), data(DAT)).

devNum N/A Device number (if applicable; e.g. LGS WFS A).

footer No Does the message include a footer?

check N/A Type of checksum used (if footer exists).

Payload:
If the request was “–current”, then the value is sent back in the form:
<<< status name here, listed in Table 5-4 the “Status Name” column = then structure listed in
Table 5-5>>>
Status request reply structure (Table 3-19)

requestType
CURRENT |
SUBSCRIBE |
UNSUBSCRIBE

Type of the request

args
As was sent String representation of the status request (may be a single

status name, or multiple)

caller identifier of the caller (if available)
runId runId above A run ID associated with the status request.

comp Status of the
request

status of completion:
SUCCESS | FAILED | REJECTED

compMsg
Any message if it
failed or was
rejected

Completion string explaining why a command is FAILED, or
REJECTED. This string will be empty if the command is
SUCCESS.

68

After subscription, the status is then sent as a data format package type (DAT) which is used to
transport complex data structures between servers. The identifier (id) specifies the data type of
the following data and the data size specifies the data type’s size. The identifier and corresponding
data type size are fixed and shared between the two servers via a common header file.

Table 5-3 - Status value reported

Name in
RTC
Message
Header

Name in the
Command Tables
below

Description

magicNum DAT Magic number used to verify start of
message/command.

id Status Name Status reporting on

size size of payload Size of data payload (in bytes).

runId Number given
when the request
was sent

Identifier for data instance (e.g. sequence number within
data stream). This is returned in the reply

time Time now Linux time stamp (e.g. arrival time of last pixel in image).

type DAT Type of message (i.e. command(CMD),
message(MSG), ack(ACK), data(DAT)).

devNum N/A Device number (if applicable; e.g. LGS WFS A).

footer No Does the message include a footer?

check N/A Type of checksum used (if footer exists).

Payload:
Value, as listed in the Published Status below

5.1 PUBLISHED STATUS

5.1.1 Published Status Names and Description

The following table lists the status names, description and where the status is available or updated
from. In some cases, if a block is not used in the creation of the RTC then that status will not be
available.

69

Table 5-4 – Published Status names, description

Status name Description Block / Process /
Pipeline

state RTC overall state CommandHandler

SRT-
RPGConnection

IP addresses and port numbers for direct connections to the SRT-
RPG. The IP/port information is represented as a string in the
following format

XXX.XXX.XXX.XXX:PORT#. If the connection is unavailable the
following string will be published 000.000.000.000:000

CommandHandler

turbLgs LGS SLODAR seeing and turbulence, in LGS mode only

turbNgs NGS seeing and turbulence, in NGS or SL mode only

calibWc Wavefront Corrector stream calibration parameters. Arrays are
ordered [TTS DM0 DM1 DM2, etc].

calibDetector Detector pixel & gradient stream calibration parameters. Arrays are
ordered [LGSWFS ODGW OIWFS NGS].

config configuration information

mode AO mode configuration information CommandHandler

inst residual instrument field rotation error

Discussion: During LGS observation, the RTC can compute the
residual field rotation error.

lgsFocus LGS drift focus error for the NCC to adjust the position of the LGS
trombone mechanism.

Discussion: The parameter lgsFocus will be updated at a specified
rate. When the rate parameter changes all subsequent updates of
lgsFocus will occur at that new rate. A rate of 0 Hz means the RTC
will no longer send subsequent offload parameter updates to the
NCC. However at some point in future the rate parameter may
change again, to a non-zero value, and the offload parameter
updates will resume at the new rate.

lgsPupilCentError LGS pupil centering error due to telescope and misalignment as
measured by the LGS. Arrays are ordered LGS WFS [A B C D E F].

lgsState LGS state. Arrays are ordered LGS WFS [A B C D E F].

lgsfPointOffset The mispointing offload value for the LGSF laser launch telescope
based on Rayleigh backscattering measurements. Arrays are
ordered LGS WFS [A B C D E F].

loop Control loop states. Command Handler

m1UncontrolledMo
des

M1 uncontrolled modes

70

Discussion: The primary mirror (M1) control system may drift due to
temperature or humidity variations during observations. This drift will
cause shape changes of M1. These are uncontrolled modes which
are reported and then acted upon by M1. These are a vector,
dependent in size on configuration

sim simulated connections flags.

ngsPupilCentError NGS pupil centering error due to telescope and misalignment as
measured by the NGS. Arrays are ordered NGS WFS [A B C D E F
G].

ngsTtf low-pass filtered NGS tip/tilt/focus error. . Arrays are ordered NGS
WFS [A B C D E F G].

ngsState NGS state. Arrays are ordered NGS WFS [A B C D E F G].

telOffloadTt tip/tilt telescope offloading

Discussion: The RTC computes the tilt modes (defined in the Noll
Zernike basis) based on the TTS. The tilt modes are offloaded and
then rotated to the telescope mount control system by the TCS.

Discussion: The parameter telOffloadTt will be updated at a specified
rate. When the rate changes all subsequent updates of telOffloadTt
will occur at that new rate. A rate of 0 Hz means the RTC will no
longer send subsequent offload parameter updates to the TCS.
However at some point in future the rate parameter may change
again, to a non-zero value, and the offload parameter updates will
resume at the new rate. Different modes (LGS & NGS AO and seeing
limited) will have different rates

telOffloadFocus focus telescope offloading

Discussion: The RTC computes the focus mode (defined in the Noll
Zernike basis) based on the DM commands. The focus mode is
offloaded and then rotated to the telescope M2 control system by the
TCS.

Discussion: The parameter telOffloadFocus will be updated at a
specified rate. When the rate parameter changes all subsequent
updates of telOffloadFocus will occur at that new rate. A rate of 0 Hz
means the RTC will no longer send subsequent offload parameter
updates to the TCS. However at some point in future the rate
parameter may change again, to a non-zero value, and the offload
parameter updates will resume at the new rate. Different modes
(LGS & NGS AO and seeing limited) will have different rates.

telOffloadMag magnification telescope offloading (TBC)

Discussion: In LGS WFS mode in which 3 OIWFSs or ODGWs are
used, the RTC computes the magnification plate scale mode
(created by a combination of telescope M1 curvature and telescope
M2 focus) based on the DM0 and DM11 commands. The
magnification error is then offloaded to the telescope M1 and M2

71

control system by the TCS. Positive values mean that the image is
too large. In NGS of Seeing Limited mode the offload magnification
error will nominally be disabled.

Discussion: The parameter telOffloadMag will be updated at a
specified rate. When the rate parameter changes all subsequent
updates of telOffloadMag will occur at that new rate. A rate of 0 Hz
means the RTC will no longer send subsequent offload parameter
updates to the TCS. However at some point in future the rate
parameter may change again, to a non-zero value, and the offload
parameter updates will resume at the new rate. Different modes
(LGS & NGS AO and seeing limited) will have different rates.

telOffloadMode mode telescope offloading

The RTC computes the coma modes and additional M1 telescope
modes (defined in the Noll Zernike basis) based on the DM
commands.

Discussion: The coma modes are offloaded and then rotated to the
telescope M2 control system by the TCS.

Discussion: The parameter telOffloadMode will be updated at a
specified rate. When the rate parameter changes all subsequent
updates of telOffloadMode will occur at that new rate. A rate of 0 Hz
means the RTC will no longer send subsequent offload parameter
updates to the TCS. However at some point in future the rate
parameter may change again, to a non-zero value, and the offload
parameter updates will resume at the new rate. Different modes
(LGS & NGS AO and seeing limited) will have different rates.

pixelCrc A bad CRC was detected in at least one pixel UDP datagram.

ngsWfsState.enabl
e[]

Enabled/disabled the reading of each NGS WFS

ngsWfsCentroid.en
able[]

Enabled/disabled inputs for the low order calculations

ngsCenteringErrSt
ate.enable[]

Enabled/disabled the sending of individual NGS centering errors.

ngsFieldRotOffsetS
tate.enable

Enabled/disabled the sending of NGS field rotation offsets to the
System Controller

ngsTipTiltState.ena
ble

Enabled/disabled the sending of NGS wavefront tip tilt corrections

ngsAvgTTtoSCSSt
ate.enable[]

Enabled/disabled the offload of average tip-tilt corrections to the
Secondary Mirror Controller

ngsFieldDistState.e
nable[]

Enabled/disabled the sending of field distortion modes to the high
order loop

lgsFocusErrorsStat
e.enable[]

Enabled/disabled the sending of LGS Focus errors to the System
Controller from the SFS WFS

72

lgsWfsState.enable
[]

Enabled/disabled the reading for each LGS WFS

lgsHoWfsState.ena
ble[]

Enabled/disabled using LGS WFS for HO calculations

lgsCenteringErrStat
e.enable[]

Enabled/disabled the sending of LGS Centering errors to the Laser
Fast Steering Mirrors

dmShapesState.en
able[]

Enabled/disabled the sending of Deformable Mirror shapes to
Deformable Mirrors

comaFocusState.e
nable[]

Enabled/disabled the sending of coma and focus corrections to the
System Controller for the Secondary Control System.

primaryFigureState
.enable

Enabled/disabled the sending of primary mirror figure corrections to
the RTC System Controller

loIntegratorsState[] LO control state

hoIntegratorState[] HO control state

5.1.2 Published Status Attributes

The following table details the attributes associated with each status item.

Table 5-5 – Published Status Attributes

Status name Attributes

Name Description Type Units

state

mode flag indicating if the RTC mode has been
configured

enum:
(UNINITIALIZE
D,
READY, BUSY)

shutdown flag indicating if the RTC Assembly has be
properly shutdown

boolean

pol indicates whether pseudo open-loop (POL)
feedback is enabled. When POL is disabled then
the uncontrolled mode cleanup path is enabled.
Nominally POL will be used in LGS mode and
disabled for NGS mode.

boolean

SRT-RPGDate flag indicating if the RTC has all the required
data from the SRT-RPG to start the pipeline

boolean

lgsBackground flag indicating if the LGS background task is
currently active

boolean

73

unsavedConfig flag indicating if any configuration parameters
have been changed, via the configParamSet or
calibLgsBackground, but has not yet been saved

boolean

unsavedLgsSky flag indicating if the current LGS sky &
instrument backgrounds have been changed, via
the calibLgsBackground command, but has not
yet been saved

boolean

errMsg RTC error description, empty string if there are
no errors.

string

SRT-
RPGConnection

wcc IP/port for WCC server endpoint. string

lgsHopA IP/port for LGS HOP A server endpoint. string

lgsHopB IP/port for LGS HOP B server endpoint. string

lgsHopC IP/port for LGS HOP C server endpoint. string

lgsHopD IP/port for LGS HOP D server endpoint. string

lgsHopE IP/port for LGS HOP E server endpoint. string

lgsHopF IP/port for LGS HOP F server endpoint. string

ngsHopA IP/port for NGS HOP A server endpoint. string

ngsHopB IP/port for NGS HOP B server endpoint. string

ngsHopC IP/port for NGS HOP C server endpoint. string

ngsHopD IP/port for NGS HOP D server endpoint. string

turbLgs

numLayer number of layers Integer

(1 ≤ x ≤ 12)

numLayerBin number of binned layers Integer

(1 ≤ x ≤ 12)

numWfsPair number of LGS WFS pairs Integer

(1 ≤ x ≤ 15)

wfsPairs LGS WFS pairs

Only the first 'numWfsPair' columns in the matrix
will be valid, the remaining columns will be set to
zero.

array[2,15] of
enum:
(LGSWFSA
LGSWFSB
LGSWFSC
LGSWFSD
LGSWFSE
LGSWFSF)

74

profile Cn
2 turbulence profile (p)

Only the first 'numLayer' row in the matrix will be
valid, all
remaining rows will be set to zero. Rows are
ordered from the ground layer up.

array[12] of float m-5/3

profileBin Binned Cn
2 turbulence profile (p')

Only the first 'numLayer' row in the matrix will be
valid, all
remaining rows will be set to zero. Rows are
ordered from the ground layer up.

array[12] of float m-5/3

r0 fried parameter (r0) float m

theta0 isoplanatic angle (θ0) float mas

theta2 generalized isoplanatic angle (θ2) float mas

L0 turbulence outer scale (L0) float m

tau0 coherence time (τ0) float seconds

turbNgs

groundLayer ground layer turbulence (p) float m-5/3

r0 fried parameter (r0) float m

l0 turbulence outer scale (L0) float m

tau0 coherence time (τ0) float seconds

calibWc

avg number of commands to average before sending
the average to the SRT-RPG.

array[3] of
integer (1 ≤ x)

mode flag indicating if RTC is sending averages
commands to the SRT-RPG.

array[3] of
enum: (STOP,
SINGLE,
CONTINUOUS)

override flag indicating if RTC is accepting WC override
commands from the SRT-RPG, for calibration

boolean

calibDetector

gradAvg Number of gradient frames to average before
sending the average to the SRT-RPG

array[4] of
integer (1 ≤ x)

gradMode Flag indicating if the RTC is sending averages
gradients to the SRT-RPG

array[4] of
enum: (STOP,
SINGLE,
CONTINUOUS,
WC_SYNC)

75

gradDelay The number of gradient frames that is delayed
(skipped) while in WC_SYNC mode, see
pixelDelay for more details.

array[4] of
integer (0 ≤ x)

pixelAvg number of pixel frames to average before
sending the average to the SRT-RPG.

array[4] of
integer (1 ≤ x)

pixelMode flag indicating if RTC is sending averages pixels
to the SRT-RPG.

array[4] of
enum: (STOP,
SINGLE,
CONTINUOUS,
WC_SYNC)

pixelDelay The number of pixel frames that is delayed
(skipped) before the starting to average pixel
frames, after a WC override command has been
applied, while in WC_SYNC mode

array[4] of
integer (0 ≤ x)

config

name current configuration file name string

version current configuration file version string

mode

rateHo high-order loop rate. In LGS mode this is equal
to the LGS WFS frame rate. In NGS or SL mode
this is equal to the NGS frame rate

float Hz

rateLo low-order loop rate. This is equal to the low
order (Tier 1 and 2) steady-state frame rate.

float Hz

rateLot low-order truth loop rate. This is equal to the Tier
3 and 3F steady-state frame rate.

float Hz

rateWc wavefront correction. In LGS mode this
should be at least equal to the LGS WFS
frame rate (i.e. the high-order rate). In NGS
mode this should be at least equal to the
NGS frame rate (i.e. the high-order rate). In
SL mode his should be at least to the Tier 1
and 2 steady-state frame rate (i.e. the low-
order rate).

float Hz

inst

rot residual error field rotation [δθ] in the XY plane.
A positive rotation is defined as
counterclockwise from X axis to Y axis.

double

(-360 ≤ x ≤ 360)

degree

rate The rate at which the instrument rotation error is
updated.

float (0 ≤ x ≤ 20) Hz

lgsPupilCentErr
or

76

x shift of the LGS pupil in the x-direction due to
misalignments

array[6] of
double

(0 ≤ x ≤ 0.5)

fraction
of pupil
diamete
r

y shift of the LGS pupil in the y-direction due to
misalignments

array[6] of
double

(0 ≤ x ≤ 0.5)

fraction
of pupil
diamete
r

rate The rate at which this telescope pupil shift
misalignment parameter is updated. This rate
will be equal to minimum of the LGS frame rate
and 20 Hz.

array[6] of float

(0 ≤ x ≤ 20)
Hz

time timestamp array[6] of
double

TAI /
PTP

lgsFocus

error net LGS drift focus error (zb) double μm of
RMS
wavefro
nt error

wfs LGS drift focus error per WFS. The arrays is
ordered LGS WFS [A B C D E F]. If the LGS
WFS is
disabled (lgsState.enable = false) then the
corresponding focus error term will be set to
zero and ignored while producing the net focus
error.

array[6]

of double

μm of
RMS
wavefro
nt error

rate the rate at which this drift focus error is updated float (0 ≤ x ≤ 20) Hz

lgsState

enable flag indicating is LGS WFS has been configured
as enabled

array[6] of
boolean

fluxHigh number of high-flux subaps array[6] of
integer (0 ≤ x)

fluxLow number of low-flux subaps array[6] of
integer (0 ≤ x)

algo current LGS gradient algorithm enum:
(COG_STATIC,
MF_COG,
MF_UPDATE,
MF_STATIC,
CUSTOM,
NONE)

77

ttFilter current tip/tilt control filter for the LGS TT loop. enum:
(INTEGRATOR,
KALMAN)

focusFilter state of the LGS gradient focus mode filter enum:
(ALLPASS,
NOPASS, LPF)

lgsfPointOffset

x x mispointing error array[6] of float arcsec
on the
sky of x
mispoint
ing

y y mispointing error array[6] of float arcsec
on the
sky of y
mispoint
ing

loop

ho State of the high-order (HO) wavefront
correction loop.

· IDLE - HO loop is not active
· LOST - at least one active LGS WFS frame

is lost, therefore no high-order correction
· ACQUIRE - HO loop is active but has not

settled (TBC)
· LOCK - HO loop has settled

enum: (IDLE,
LOST,
ACQUIRE,
LOCK)

lgsFocus State of the LGS Trombone Focus offloading
loop.

· IDLE - RTC is not offloading focus
· LOST - a LGS spot can not be detect on at

least one active LGS WFS, therefore no
offloading

· ACQUIRE - RTC is offloading focus, but
focus error is above the configured focus
threshold (from config file)

· LOCK - RTC is offloading focus and focus
error is below the configured focus threshold
(from config file)

enum: (IDLE,
LOST,
ACQUIRE,
LOCK)

lgsFocusFilter State of the LGS Focus filter applied to the high-
order gradients.

enum: (ALL,
NO, LOW)

78

· ALL
· NO
· LOW

lgsDither flag indicating the state of LGS WFS dithering in
the RTC.

· NONE - the RTC will not dither the DM (LGS
purposes) nor the LGSF FSMs.

· CP - the RTC is currently applying the CP
DM dither signal. This dither signal can be
enabled independently of the high and low-
order loops (see loop.ho & loop.lo).

· NCP - the RTC is currently applying a LGSF
FSM dither signal, which can be enabled
independently of the LGS TT control loop
(see loop.lgsTt)

enum: (CP,
NCP, NONE)

lgsTt State of the LGS TT control loop that drive
the LGSF FSM, this does not include the
application of dither signal which can be
enabled independently (see published item
lgsDither). The array is ordered LGSF FSM
[A B C D E F].

· IDLE - RTC is not sending FSM commands
· LOST - FSM command is lost, previous

FSM command will be use
· ACQUIRE - RTC is sending FSM

commands, but TT error is above the
configured TT threshold (from config file)

· LOCK - RTC is sending FSM commands
and TT error is below the configured TT
threshold (from config file)

· INACTIVE - the LGS WFS is disabled,
therefore a zero command is sent for this
LGSF FSM.

array[6] of
enum: (IDLE,
LOST,
ACQUIRE,
LOCK,
INACTIVE)

lgsDriftTt Flag indicates whether to TT drift terms are
added to the LGS TT control loop

boolean

lo Combined state of all low-order tiers, i.e.
all active low-order and low-order truth
detectors, (see loop.tier*). The possible
overall states are:

· IDLE - all LO tiers are IDLE or INACTIVE
· LOST - at least one LO tier is LOST

enum: (IDLE,
LOST,
ACQUIRE,
DITHER, LOCK,
LOCK_PARTIA
L)

79

· ACQUIRE - at least one LO tier is
ACQUIRE, but no LO tier is LOST

· DITHER - at least one LO tier is DITHER,
but no LO tier is LOST or ACQUIRE

· LOCK_PARTIAL - at least one LO tier is
LOCK, all other tiers states are LOCK, IDLE
or INACTIVE

· LOCK - all tier states are LOCK or
INACTIVE. The overall state is set following
these rules of president (in order):

· LO state is LOST if any tier state is LOST
· LO state is ACQUIRE if any tier state is

ACQUIRE
· LO state is DITHER if any tier state is

DITHER
· LO state is LOCK if all tier states are LOCK

or INACTIVE
· LO state is LOCK_PARTIAL if any tier state

is LOCK
· else LO state is IDLE

loFilter current temporal filter type used for each LO
mode. The array is ordered LO mode [Tip,
Tilt, Focus, Plate Scale X, Plate Scale Y, Plate
Scale 45]

array[6] of
enum: (NONE,
TYPE1_ACQ,
TYPE1,
KALMAN)

oiwfsPoa state of the offload to the OIWFS POAs. The
array is ordered OIWFS [1 2 3].

· IDLE - RTC not offloading to OIWFS POA
· LOST - the OIWFS frame is lost, therefore

offloading value is set to zero.
· ACTIVE - offloading to OIWFS POA

array[3] of
enum: (IDLE,
LOST,
ACTIVE)

arcsec

ngsDither flag indicating the state of NGS dithering in the
RTC.

· NONE - then the RTC will not dither the DM
(for NGS purposes) and will ignore the NGS
FSM position stream.

· CP - the RTC assumes the NGS FSM is
being dither and will listen to the NGS FSM
position stream from the NCC for dither
signal estimation.

· NCP - the RTC is currently applying the CP
DM dither signal. This dither signal can be

enum: (CP,
NCP, NONE)

80

enabled independently of the high and low-
order loops.

ngsSsm state of the offload to the visible NGS (i.e. NGS)
SSM.

· IDLE - RTC not offloading to SSM
· LOST - NGS frame is lost, therefore no

offloading value is set to zero.
· ACTIVE- offloading to SSM

enum: (IDLE,
LOST, ACTIVE)

twfs State of the LGS TWFS reference vector
update process.

· IDLE - RTC not update TWFS reference
vector

· LOST - NGS frame is lost, therefore no
TWFS reference vector updates

· DITHER - telescope is dithering, therefore
no TWFS reference vector updates

· LOCK - guide star lock and TWFS reference
vector is being updated

enum: (IDLE,
LOST, DITHER,
LOCK)

ready A flag indicating if the RTC pipeline is ready to
close loops. If TRUE then pixel
processing has started and the DMs and TTS
are being driven to current shape in the main
integrator

boolean

tier0 State of a NGS Tier 0 wavefront correction loop

· IDLE - tier is inactive
· LOST - tier frame is lost and not contributing

to low-order correction
· DITHER - telescope is dithering, tier may be

either (re)acquiring or locked on guide star
· LOCK - tier is locked on guide star

enum: (IDLE,
LOST, DITHER,
LOCK)

tier1 State of a LO Tier 1 wavefront correction loop

· IDLE - tier is inactive
· LOST - tier frame is lost and not contributing

to low-order correction
· ACQUIRE - tier is (re)acquiring
· DITHER - telescope is dithering, tier may be

either (re)acquiring or locked on guide star
· LOCK - tier is locked on guide star

enum: (IDLE,
LOST,
ACQUIRE,
DITHER, LOCK)

81

tier2 State of a LO Tier 2 wavefront correction loop.
The array is ordered Tier 2 [A B].

· IDLE - tier is not active
· LOST - tier frame is lost and not contributing

to low-order correction
· ACQUIRE - tier is (re)acquiring
· DITHER - telescope is dithering, tier may be

either (re)acquiring or locked on guide star
· LOCK - tier is locked on guide star
· INACTIVE - no detector was specified for

this tier, therefore it does no contribute to
the low-order loop

array[2] of
enum: (IDLE,
LOST,
ACQUIRE,
DITHER, LOCK,
INACTIVE)

tier3 State of a LOT Tier 3 wavefront correction loop.
The array is ordered Tier 3 [A B C D].

· IDLE - tier is inactive
· LOST - tier frame is lost and not contributing

to low-order correction
· ACQUIRE - tier is (re)acquiring
· DITHER - telescope is dithering, tier may be

either (re)acquiring or locked on guide star
· LOCK - tier is locked on guide star
· INACTIVE - no detector was specified for

this tier, therefore it does no contribute to
the low-order loop

array[4] of
enum: (IDLE,
LOST,
ACQUIRE,
DITHER, LOCK,
INACTIVE)

tier3f State of a LOT Tier 3 wavefront correction loop

· IDLE - tier is inactive
· LOST - tier frame is lost and not contributing

to low-order correction
· ACQUIRE - tier is (re)acquiring
· DITHER - telescope is dithering, tier may be

either (re)acquiring or locked on guide star
· LOCK - tier is locked on guide star
· INACTIVE - no detector was specified for

this tier, therefore it does no contribute to
the low-order loop

enum: (IDLE,
LOST,
ACQUIRE,
DITHER, LOCK,
INACTIVE)

telOffloadTt state of the TT telescope offload publishing for
the TCS

· IDLE - The RTC is not publishing
telOffloadTt

enum: (IDLE,
LOST, LOCK)

82

· LOST - The RTC is publishing telOffloadTt,
but due to lost data/frame the values are set
to zero.

· LOCK -The RTC is publishing telOffloadTt
for offloading to the TCS

telOffloadFocus state of the focus telescope offload publishing
for the TCS

· IDLE - The RTC is not publishing
telOffloadFocus

· LOST - The RTC is publishing
telOffloadFocus, but due to lost data/frame
the values are set to zero.

· LOCK -The RTC is publishing
telOffloadFocus for offloading to the TCS

enum: (IDLE,
LOST, LOCK)

telOffloadMag state of the magnification telescope offload
publishing for the TCS

· IDLE - The RTC is not publishing
telOffloadMag

· LOST - The RTC is publishing
telOffloadMag, but due to lost data/frame the
values are set to zero.

· LOCK - The RTC is publishing
telOffloadMag for offloading to the TCS

enum: (IDLE,
LOST, LOCK)

telOffloadMode state of the telescope mode offload publishing
for the TCS

· IDLE - The RTC is not publishing
telOffloadMode

· LOST - The RTC is publishing
telOffloadMode, but due to lost data/frame
the values are set to zero.

· LOCK -The RTC is publishing
telOffloadMode for offloading to the TCS

enum: (IDLE,
LOST, LOCK)

oiwfs1Poa

tip OIWFS 1 tip error double arcsec

tilt OIWFS 1 tilt error double arcsec

rate The rate at which the OIWFS 1 tip/tilt errors
offloading parameter is updated.

float (0 ≤ x ≤ 20) Hz

83

oiwfs2Poa

tip OIWFS 2 tip error double arcsec

tilt OIWFS 2 tilt error double arcsec

rate The rate at which the OIWFS 2 tip/tilt errors
offloading parameter is updated.

float (0 ≤ x ≤ 20) Hz

oiwfs3Poa

tip OIWFS 3 tip error double arcsec

tilt OIWFS 3 tilt error double arcsec

rate The rate at which the OIWFS 3 tip/tilt errors
offloading parameter is updated.

float (0 ≤ x ≤ 20) Hz

ngsState

enable flag indicating is OIWFS has been configured as
enabled

array[7] of
enum: (NONE
TT TTF)

fluxHigh OIWFS high-flux flag array[7] of
boolean

fluxLow OIWFS low-flux flag array[7] of
boolean

algo current OIWFS gradient algorithm array[7] of
enum:
(COG_STATIC,
MF_COG,
MF_UPDATE,
MF_STATIC,
BP, CUSTOM,
NONE)

handOff flag indicating if the detector is currently disabled
for guide star hand-off

array[7] of
boolean

acqTable flag indicating if the acquisition and dither tables
have been set in the RTC for the OIWFSs

array[7] of
boolean

sim

dm0 DM0 simulated connection flag. If set then
commands are sent to the simulator IP/port
instead of the DM0 IP/port.

boolean

dm11 DM11 simulated connection flag. If set then
commands are sent to the simulator IP/port
instead of the DM11 IP/port.

boolean

84

lgs LGS WFS pixel simulated connection flag. If set
then pixels are processed from to the simulator
port instead of the real LGS WFS

boolean

Lgsf LGSF simulated connection flag. If set then
commands are sent to the simulator IP/port
instead of the LGSF IP/port.

boolean

odgw ODGW pixel simulated connection flag. If set
then pixels are processed from to the simulator
port instead of the real ODGW port

array[4] of
boolean

oiwfs The array is ordered ODGW [1 2 3 4].

OIWFS pixel simulated connection flag.

If set then pixels are processed from to the
simulator port instead of the real OIWFS port.
The array is ordered OIWFS [1 2 3].

array[3] of
boolean

ngs NGS pixel simulated connection flag. If set then
pixels are processed from to the simulator port
instead of the real NGS port.

boolean

SRT-RPG SRT-RPG simulated connection flag. If set then
RTC will communicate with the simulated SRT-
RPG IP/port specified in the configuration file

tts TTS simulated connection flag. If set then
commands are sent to the simulator IP/port
instead of the TTS IP/port.

boolean

ngsPupilCentErr
or

x shift of the NGS pupil in the x-direction due to
misalignments

array[7] of
double

(0 ≤ x ≤ 0.5)

fraction
of pupil
diamete
r

y shift of the NGS pupil in the y-direction due to
misalignments

array[7] of
double

(0 ≤ x ≤ 0.5)

fraction
of pupil
diamete
r

rate The rate at which this telescope pupil shift
misalignment parameter is updated. This rate
will be equal to minimum of the NGS frame rate
and 20 Hz.

array[7] of float
(0 ≤ x ≤ 20)

Hz

time timestamp array[7] of
double

TAI /
PTP

85

ngsTtf

tip NGS tip error array[7] of
double

Arcsec
on the
sky

tilt NGS tilt error array[7] of
double

Arcsec
on the
sky

focus NGS focus error array[7] of
double

μm of
RMS
wavefro
nt error

rate The rate at which the NGS tip/tilt/focus errors
offloading parameter is updated.

array[7] of float

(0 ≤ x ≤ 20)

Hz

ngsState

ngsBin width of NGS bin in pixels enum: (1, 2, 4,
8, 16, 32)

fluxHigh number of high-flux subaps (where a subap is a
set of four quadrant pixels)

integer (0 ≤ x)

fluxLow number of low-flux subaps (where a subap is a
set of four quadrant pixels)

integer (0 ≤ x)

algo current NGS gradient algorithm enum:
(COG_STATIC,
GOG_UPDATE,
CUSTOM,
NONE)

opticalGain current NGS optical gain, ordered [x, y]. If the
scalar optical gain optimization algorithm is
specified in the RTC Assembly configuration file,
then both values in the array will be equal.

array[2] of
double

handOff flag indicating if the detector is currently disabled
for guide star hand-off

boolean

telDitherFlag flag indicating if NGS thinks the telescope is
dithering or not

boolean

telDitherGain gain applied to the NGS gradients while the
telescope is performing a dither

float (0 ≤ x ≤ 1)

telOffloadTt

x tip mode float Arcsec
on the
sky

86

y tilt mode float Arcsec
on the
sky

rate the rate at which this telescope TT offloading
parameter is updated

float (0 ≤ x ≤ 20) Hz

time timestamp double TAI /
PTP

telOffloadFocus

focus focus mode float μm of
WFE
RMS

rate the rate at which this telescope focus offloading
parameter is updated

float (0 ≤ x ≤ 20) Hz

time timestamp double TAI /
PTP

telOffloadMag

magnification The magnification plate scale error is relative to
the telescope prescription.

float

(-0.01≤ x ≤0.01)

fractiona
l error of
image
scale
relative
to the
designe
d
telescop
e
prescript
ion

rate the rate at which this telescope magnification
offloading parameter is updated

float (0 ≤ x ≤ 20) Hz

time timestamp double TAI /
PTP

telOffloadMode

comaX x coma mode float μm of
WFE
RMS

commaY y coma mode float μm of
WFE
RMS

m1 M1 modes

Discussion: The RTC computes the M1 modes
(defined in the Noll Zernike basis, but

array[100] of
float

nm of
RMS
wavefr

87

excluding piston, tilt, focus and coma modes)
based on the DM0 commands. The M1 modes
are offloaded and then rotated to the telescope
M1 control system by the TCS. In LGS and NGS
modes up to approximately 100 M1 modes are
offloaded. In seeing limited mode, only up to the
5th order radial modes are offloaded, zero-
padded up to the full vector length.

o-nt
error

rate The rate at which this telescope TT offloading
parameter is updated

float (0 ≤ x ≤ 20) Hz

time timestamp double TAI /
PTP

pipelineDelay (Notable events are defined in Section 5.3)

state State of the Notable Event boolean

msg Error message describing the Notable Event string

ngsDitherTimeo
ut

state State of the Notable Event boolean

msg Error message describing the Notable Event string

lotLost

state State of the Notable Event boolean

msg Error message describing the Notable Event string

lotfLost

state State of the Notable Event boolean

msg Error message describing the Notable Event string

lotDegrade

state State of the Notable Event boolean

msg Error message describing the Notable Event string

loLost

state State of the Notable Event boolean

msg Error message describing the Notable Event string

loDegrade

state State of the Notable Event boolean

msg Error message describing the Notable Event string

loNgsLost

state State of the Notable Event boolean

88

msg Error message describing the Notable Event string

loCorrectionLost

state State of the Notable Event boolean

msg Error message describing the Notable Event string

hoCorrectionLos
t

state State of the Notable Event boolean

msg Error message describing the Notable Event string

loErrVectLost

state State of the Notable Event boolean

msg Error message describing the Notable Event string

hoErrVectLost

state State of the Notable Event boolean

msg Error message describing the Notable Event string

ttsSenseLost

state State of the Notable Event boolean

msg Error message describing the Notable Event string

dmClip

state State of the Notable Event array[3] of
boolean

msg Error message describing the Notable Event array[3] of string

lgsTtConvergeEr
ror

hop Block num int

state State of the Notable Event boolean

msg Error message describing the Notable Event string

lgsFocusConver
geError

hop Block num int

state State of the Notable Event boolean

msg Error message describing the Notable Event string

lgsTtCorrectionL
ost

hop Block num int

89

state State of the Notable Event boolean

msg Error message describing the Notable Event string

lgsTtSenseLost

state State of the Notable Event boolean

msg Error message describing the Notable Event string

lgsFocusCorrect
ionLost

hop Block num int

state State of the Notable Event boolean

msg Error message describing the Notable Event string

lgsPolGradLost

hop Block num int

state State of the Notable Event boolean

msg Error message describing the Notable Event string

lgsDmShapeLos
t

hop Block num int

state State of the Notable Event boolean

msg Error message describing the Notable Event string

ngsGradMissing

hop Block num int

state State of the Notable Event boolean

msg Error message describing the Notable Event string

ngsGradOrder

hop Block num int

state State of the Notable Event boolean

msg Error message describing the Notable Event string

ngsGradCrc

hop Block num int

state State of the Notable Event boolean

msg Error message describing the Notable Event string

dmVectMissing

hop Block num int

90

state State of the Notable Event boolean

msg Error message describing the Notable Event string

dmVectOrder

hop Block num int

state State of the Notable Event boolean

msg Error message describing the Notable Event string

dmVectCrc

hop Block num int

state State of the Notable Event boolean

msg Error message describing the Notable Event string

guardRow

detector Detector that triggered the Notable Event enum:
(OIWFSA,
OIWFSB,
OIWFSC,
ODGW1,
ODGW2,
ODGW3,
ODGW4)

state State of the Notable Event boolean

msg Error message describing the Notable Event string

lowFlux

detector Detector that triggered the Notable Event enum:
(LGSWFSA,
LGSWFSB,
LGSWFSC,
LGSWFSD,
LGSWFSE,
LGSWFSF,
NGS, OIWFSA,
OIWFSB,
OIWFSC,
ODGW1,
ODGW2,
ODGW3,
ODGW4)

state State of the Notable Event boolean

msg Error message describing the Notable Event string

pixelMissing

91

detector Detector that triggered the Notable Event enum:
(LGSWFSA,
LGSWFSB,
LGSWFSC,
LGSWFSD,
LGSWFSE,
LGSWFSF,
NGS, OIWFSA,
OIWFSB,
OIWFSC,
ODGW1,
ODGW2,
ODGW3,
ODGW4)

state State of the Notable Event boolean

msg Error message describing the Notable Event string

pixelOrder

detector Detector that triggered the Notable Event enum:
(LGSWFSA,
LGSWFSB,
LGSWFSC,
LGSWFSD,
LGSWFSE,
LGSWFSF,
NGS, OIWFSA,
OIWFSB,
OIWFSC,
ODGW1,
ODGW2,
ODGW3,
ODGW4)

state State of the Notable Event boolean

msg Error message describing the Notable Event string

pixelCrc

detector Detector that triggered the Notable Event enum:
(LGSWFSA,
LGSWFSB,
LGSWFSC,
LGSWFSD,
LGSWFSE,
LGSWFSF,
NGS, OIWFSA,
OIWFSB,
OIWFSC,
ODGW1,

92

ODGW2,
ODGW3,
ODGW4)

state State of the Notable Event boolean

msg Error message describing the Notable Event string

5.2 SUBSCRIBED STATUS

The following table lists the status that is required from outside the RTC, it also indicates where
that data is directed. It is expected that this table will be updated over time.

Table 5-6 – Subscribed Status names, description and where it is used

Status name Desc Block/Proces
s/Pipeline

Zenith Angle Telescope zenith angle SRT

R0 Initial R0 estimate SRT

5.3 NOTABLE EVENTS

A common occurrence throughout control systems is the generation of flags or warnings by
components to indicate that some sort of exceptional, but automatic, control action must be taken.
These are called “notable events”. They are not to be confused with “alarms” that have a strict
interpretation, being reserved for conditions that require human operator intervention (i.e.,
corrective action cannot be taken automatically for an alarm). The notable event itself may simply
trigger other checks to determine what precisely caused the event (e.g., by checking other
published state variables), before deciding on the appropriate corrective action.

All notable events are assumed to have internal state (usually Boolean), unless specifically stated
otherwise. This implies that when a condition arises that warrants a notable event, the internal
notable event state will be set to true and are published. However, if on consecutive subsequent
frames/iterations the condition persists, the notable event will not continue to be published
repeatedly (to reduce unnecessary bandwidth usage). Conversely, if the condition that raised the
notable event is no longer true, the notable event state is cleared and published again. A
timestamp will be included that indicates when the notable event state transition occurred
internally (i.e., it will generally have occurred before the event is actually published).

A major use of notable events, particularly in the RTC, is to inform the higher-level software that
there is low flux on a detector, this is likely due to the loss of an individual guide star. In this case,
the higher-level software can pause an observation and autonomously trigger a re-acquisition
process for that star, which has the potential for recovery much faster than re-applying the full AO
acquisition sequence.

A component may also publish notable events for a variety of other component/instrument specific
reasons or for other miscellaneous unexpected faults, such as hardware communication issues,
missing data packages, slow or late data transmissions, or garbled/invalid data.

A list of notable events is given in Section 5.3

93

5.3.1 Notable Events Publishing Rate

One issue with internal states is they are often based on a noisy measurement; if subsequent
measurements lie close to a state transition threshold, there may be high-frequency oscillations
between the true/false states. To avoid high-frequency oscillations in a notable event stream, the
responsible state object will only publish a notable event at a configurable maximum frequency
(e.g., 100 Hz, or every 10 ms). If the internal state of the notable event is true over the entire 10
ms period, the event will only be published if the previous published state was false. However, if
over that period the state switches from false to true, then the notable event will be published as
true, even if it was previously true. Finally, if the previously published state is true, and over the
entire period the state is false or the state only switches from true to false, then the notable event
will be published as false.

An example of a changing internal state with notable events published every 10 ms is shown in
Figure 7.

Figure 7 - Illustration of published notable events (red) with a 10 ms period, corresponding to a changing
noisy internal state (green).

In this figure, it is assumed that the internal state is initially false. The following bullets summarize
the notable events that are published at the indicated times:

· 10 ms -> true: reports that the internal state went true at 5 ms
· 30 ms -> false: reports that the internal state went false at 22 ms
· 40 ms -> true: reports that the internal state went true at 33 ms
· 50 ms -> false: reports that the internal state went false at at 37 ms
· 60 ms -> true: reports that the internal state went true at 52 ms

Despite the oscillations in the internal state between 50 and 60 ms, it finished true, so no further
notable event indicating that it temporarily went false would be published.

0 10 20 30 40 50 60

Time (ms)

Notable Event

Noisy Internal
State

94

5.3.2 Notable Event Fields

These are events that are reported in the Global Memory by a block for the Command Handler.
They are then available for the System Controller to read. These are special status called notable
events.

The format for the request for notable events is the same as described in Section 5.1.

Table 5-7 – Notable Events

Event Block Description

ngsPixelMissing Low order NGS
processing

At least one NGS pixel UDP datagram
was missing from the frame.

ngsOutOfOrder Low order NGS
processing

At least one NGS pixel UDP datagram
was received out of order.

ngsBadCrc Low order NGS
processing

A bad CRC was detected in at least
one NGS pixel UDP datagram.

ngsLowFlux Low order NGS
processing Insufficient flux detected on NGS.

ngsOiwfsPixelMissing Low order NGS
processing

At least one OIWFS pixel UDP
datagram was missing from the frame.

hoDMVectOutOfOrder Temporal Filtering &
Combination

At least one HO DM vector UDP
datagram was received out of order.

hoDMVectBadCrc Temporal Filtering &
Combination

A bad CRC was detected in at least
one HO DM vector UDP datagram.

lotLost LO Reconstructor LOT modes cannot be computed.

lotDegrade LO Reconstructor Only some of the LOT modes can be
computed.

loLost LO Reconstructor LO modes cannot be computed.

loDegrade LO Reconstructor Only some of the LO modes can be
computed.

loNgsLost LO Reconstructor LO modes, based on the Tier 0 NGS
modes, cannot be computed.

loCorrectionLost Temporal Filtering &
Combination LO error vector cannot be computed.

hoCorrectionLost HO Reconstructor HO error vector cannot be computed.

hoErrVectLost HO Reconstructor LO error vector is late

loErrVectLost HO Reconstructor HO error vector is late

ttsSenseLost Closed Loop WFC Failed to get TTS postion.

dmClip Closed Loop WFC DMs were excessively clipped.

95

lgsTtConvergeError Closed Loop WFC LGS TT error has not converged in the
expected amount of time.

lgsTtCorrectionLost LGS processing Lost LGS TT correction.

lgsFocusConvergeError LGS processing Missing some or all LGS focus errors

lgsPolGradLost Temporal Filtering &
Combination

Missing some or all LGS POL
gradients

lgsDmShapeLost Temporal Filtering &
Combination Lost LGS DM shape feedback

lowFlux Command Handler Insufficient flux detected on a detecto

log Command Handler
Includes the output of the command
handler, and it based on the current
debut level

overallPipelineStatus Command Handler A combination of all of the
block/pipeline status

pipelineDelay Command Handler Part or all of the RTC pipeline is
running slow

Notable Event.

5.4 ALARMS

Alarms indicate a condition that require a human operator’s intervention, or at least
acknowledgement. It is assumed that alarms cannot be monitored by another component
(implying that alarms cannot be used directly to remedy the situation); only a human user is
intended to take action on an alarm. For conditions that can be addressed by higher-level
software, notable events are used.

A common alarm that most components can raise is a watchdog alarm. The watchdog is
continually sending ping messages to the Command Handler. A failure to receive this means the
component is not behaving correctly and therefore a watchdog alarm is raised to indicate that
there is a problem. Since alarm states must also be refreshed at least once every 9 seconds, it is
expected that these updates will be triggered by the ping message from the Watchdog (thus,
implying a maximum period of 9 seconds for the Watchdog).

A component may raise alarms for a variety of component/instrument specific reasons or for other
miscellaneous unexpected conditions that require an operator’s attention or to report faults, that
prevent the normal operation of the component.

These are events that are reported as status from the Commands Handler to the System
Controller. These are special status or alarm events.

The format for the request for notable events is the same as described in Section 5.1.

96

Table 5-8- Alarm Events that are published

Event Block Description

watchdog Command Handler Some part of the RTC has become
unresponsibe

pipelineDelay Command Handler Part of all of the RTC pipelines is
running slow (exception is when
pipeline rates are changed and it is
settling)

pipelineFault Command Handler Part or all of the RTC pipeline is not
running

6. FILE FORMATS OF READ-IN FILES
The following will detail the file formats for the following files:

· Dark, Bias and Flat files for both HO and LO WFS
· Reference offset file
· SRT-RPG configuration file
· Wavefront Corrector files
· Hardware configuration file
· SRT configuration settings
· Sub-Aperature Maks file
· NCPA file

It is likely that the format of these files will evolve over time.

Table 6-1 - HEART Input file formats

Name Description Format

DARK_FILE Containing 1 set of darks for all
WFS’s

FITS file format containing extensions for
first all HO WFS, then all LO WFS

Keywords in the header will detail the
contents

BIAS_FILE Containing 1 set of bias files for
all WFS’s

FITS file format containing extensions for
first all HO WFS, then all LO WFS

Keywords in the header will detail the
contents

FLAT_FILE Containing 1 set of flats for all
WFS’s

FITS file format containing extensions for
first all HO WFS, then all LO WFS

Keywords in the header will detail the
contents

97

REF_OFFS_FILE Reference offsets Text file, first line contains # off offsets,
following lines contains the offsets

WFC_LAB_FLAT Path/filename to a file
containing WFC Lab flat

Text file, first line contains # of actuators,
following lines contains the settings for each
actuator

WFC_SYS_FLAT Path/filename to a file
containing WFC system flats

Text file, first line contains # of actuators,
following lines contains the settings for each
actuator

WFC_DM_SHAPE Path/filename to a file
containing DM shape

Text file, first line contains # of actuators,
following lines contains the settings for each
actuator

SRT_CONF_FILE Path/filename to a file
containing the SRT
configuration

key/value pairs:
- min/max loop gain
- default fudge gain for reconstr
- number PSD data points

number segments to average

WFC APERTURE Path/filename to a file
containing WFC aperture pupil

Fits file format

HARDWARE_FILE Contains hardware
assignments for blocks

List a block name and priority

SRT_CONF_FILE Path/filename to a file
containing the SRT
configuration, which contains
key/value pairs:
- min/max loop gain
- default fudge gain for

reconstructor
- number of PSD data points

number of segments to average

Lists the key word, then value.

SUBAPP_MASK_FILE Sub-aperature mask file, fits
format

Fits file format

NCPA_FILE Non-common path file, if not
using then this is a file full of 1’s

Text file, first line contains number of
parameters in the file, the following lines
contain the data

7. ADDITIONAL COMMANDS NOT YET PROMOTED
This section covers commands and status that may graduate to the external interface during the
build. It depends on the need for it. The second section are some commands that are specific to
certain architectures.

98

7.1 COMMANDS

The following commands are relevant mostly to lower level commands or pyramid wavefront
sensing. These commands may be promoted to official commands if the needs presents itself.

7.1.1 algoSetLgs

Description sets the LGS gradient computation algorithm
Type simple
Command Name algoSetLgs
Parameters (in) Field Description Type Units Requir

ed
algo Selected LGS gradient algorithm enum:

(COG_STATIC,
MF_UPDATE,
MF_STATIC)

Yes

Parameters (out)

Status values
affected

Precondition:
 state.cmd = READY
 loop.ready = true
 lgsState.enable[{at least one}] = true
 if {input enable == MF_UPDATE}, then loop.lgsDither != NONE
 if {input enable == MF_STATIC}, then lgsState.algo = MF_UPDATE
Execution:
 state.cmd = BUSY
At Completion:
 state.cmd = READY

Action and Response

This command sets the LGS gradient computation algorithm.

When the LGS algorithm is set to MF_UPDATE, the LGS matched filter optimization is started.
This algorithm can only be selected if LGS dithering is enabled (loop.lgsDither != NONE). If the
previous algorithm was not MF_STATIC, then the LGS pixel processing does not have a set of
matched filters. Therefore it will initially use CoG (lgsState.algo = MF_COG) and once a set of
matched filters has been computed then they will be applied to the pixel processing (lgsState.algo
= MF_UPDATE).

While matched filter optimization is enabled (lgsState.algo = MF_COG | MF_UPDATE) the LGS
dither DLL integrators, i0 frames and matched filters will be updated.

While not optimizing (lgsState.algo != MF_COG | MF_UPDATE) the updating of optimization
parameters will be suspended. Re-enabling the optimization will append new data to the
previously gathered statistics; however RTC will delay the new statistic gathering so the new data
lines up in dither signal phase with where the old data left off.

Enabling matched filter optimization will also trigger the updating of the MFU portion of the
TWFS/MFU reference vector. However, while the telescope is preforming a dither, the RTC
should be instructed by the System Controller to suspend the matched filter optimization by
switching to MF_STATIC or COG_STATIC.

99

When the LGS algorithm is set to COG_STATIC, the LGS gradients will be generated using center
of gravity. Any matched filter statistic gathering will be suspended, but not reset. This is the default
state after activating the pipeline (via the pipelineActivate command).

When the LGS algorithm is set to MF_STATIC, the LGS gradients will be generated using the
current matched filters. However, it will not update the current matched filters. Matched filter
statistic gathering will be suspended, but not reset. This algorithm can only be selected if the
previous state was MF_UPDATE.

Note that this command does not reset the LGS dither DLL integrators, the time-series of i(b)
frames used to update the i(0) frame, or matched filters. To reset the LGS optimization parameters
the loopParamRest command can be used.

7.1.2 algoSetNgs

Description sets the NGS gradient computation algorithm
Type simple
Command Name algoSetNgs
Parameters (in) Field Description Type Units Requir

ed
algo Selected NGS gradient computation

algorithm
enum:
(COG_STATIC,
COG_UPDATE)

Yes

Parameters (out)

Status values
affected

Precondition:
 state.cmd = READY
 loop.ready = true
 if {input enable == COG_UPDATE}, then loop.ngsDither != NONE
Execution:
 state.cmd = BUSY
At Completion:
 state.cmd = READY
 ngsState.algo[] = {input algo}

Action and Response
This command sets the NGS gradient computation algorithm.

When the NGS algorithm is set to COG_UPDATE, the NGS optical gain optimization is started.
This algorithm can only be selected if NGS dithering is enabled (loop.pwsfDither != NONE).
However, while the telescope is preforming a dither, the RTC should be instructed by the System
Controller to halt optical gain optimization by switching to COG_STATIC.

While optical gain optimization is enabled (i.e. ngsState.algo = COG_UPDATE), the NGS optical
gain value and NCP dither DLL integrator will be updated. While not optimizing (i.e. ngsState.algo
!= COG_UPDATE), the updating of optimization parameters will be suspended. Re-enabling the
optimization will append new data to the previously gathered statistics; however RTC will delay
the new statistic gathering so the new data lines up in dither signal phase with where the old data
left off.

100

When the NGS algorithm is set to COG_STATIC, the NGS gradients will be generated using
center of gravity. This is the default state after activating the pipeline, via the pipelineActivate
command.

Note that this command does not reset the NGS optical gain value or the NCP dither DLL
integrator. To reset the optical gain the loopParamRest command can be used.

7.1.3 algoSetOiwfsOdgw

Note that this function may be renamed to algoSetLoNgs as part of a refactoring process to
generalize the OIWFS and ODGW algorithm selection be suitable for any LO order NGS WFS.

Description sets the OIWFS/ODGW gradient computation algorithm
Type simple
Command Name algoSetOiwfsOdgw
Parameters (in) Field Description Type Units Required

detector OIWFS or ODGW detector enum: (OIWFSA,
OIWFSB,
OIWFSC,
ODGW1,
ODGW2,
ODGW3,
ODGW4)

no

algo OIWFS/ODGW gradient computation
algorithm

enum:
(COG_STATIC,
MF_UPDATE,
MF_STATIC, BP)

yes

Parameters (out)

Status values
affected

Precondition:
 state.cmd = READY
 loop.ready = true
 oiwfsState.enable[{input detector}] != NONE
 odgwState.enable[{input detector}] = true
 if {input algo == MF_STATIC}, then oiwfsState.algo[{input detector}] =
MF_UPDATEodgwState.algo[{input detector}] = MF_UPDATE
Execution:
 state.cmd = BUSY
At Completion:
 state.cmd = READY
 oiwfsState.algo[{input detector}] = {input algo} | MF_COG
 odgwState.algo[{input detector}] = {input algo} | MF_COG

Action and Response

This command sets the OIWFS/ODGW gradient computation algorithm.

When the OIWFS/ODGW algorithm is set to MF_UPDATE, the OIWFS/ODGW matched filter
optimization is started. If the previous algorithm was not MF_STATIC, then the OIWFS/ODGW
pixel processing does not have a matched filter. Therefore, it will initially use CoG (i.e.

101

oiwfs/odgwState.algo = MF_COG) and, once the matched filter has been computed, then it will
be applied to the pixel processing (oiwfs/odgwState.algo = MF_UPDATE). However, while the
telescope is preforming a dither or the detector is (re-)acquiring, the RTC should be instructed by
the System Controller to halt the matched filter optimization by switching to MF_STATIC or
COG_STATIC.

When the OIWFS/ODGW algorithm is set to BP, the OIWFS/ODGW gradients will be generated
using the brightest pixel.

When the OIWFS/ODGW algorithm is set to COG_STATIC, the OIWFS/ODGW gradients will be
generated using center of gravity (CoG).

When the OIWFS/ODGW algorithm is set to MF_STATIC, the OIWFS/ODGW gradients will be
generated using the current matched filters. However, it will not update the current matched filters.
This algorithm can only be selected if the previous state was MF_UPDATE.

Note that this command does not clear the current OIWFS/ODGW matched filters.

7.1.4 setLgsTtCntrl

Description sets the controller type used in the LGS TT loop
Type simple
Command Name setLgsTtCntrl
Parameters (in) Field Description Type Units Requir

ed
cntrl desired LGSF FSM TT controller enum:

(INTEGRATOR,
KALMAN)

yes

Parameters (out)

Status values
affected

Precondition:
 state.cmd = READY
 loop.ready = true
 lgsState.enable[{at least one}] = true
 loop.lgsTt[] = IDLE | INACTIVE
Execution:
 state.cmd = BUSY
At Completion:
 state.cmd = READY
 lgsState.tt = {input cntrl}

Action and Response

This command sets the controller type used in the LGS TT loop.

102

7.1.5 lgsfFsmZero

Description sends a zero command to all LGSF FSMs
Type simple
Command Name lgsfFsmZero
Parameters (in) Field Description Type Units Required

Parameters (out)

Status values
affected

Precondition:
 state.cmd = READY
 loop.ready = true
 loop.lgsTt[] = IDLE | INACTIVE
Execution:
 state.cmd = BUSY
At Completion:
 state.cmd = READY

Action and Response

This command sends a zero command to all LGSF FSMs.

This command is rejected if the LGS TT loop is closed.

7.1.6 loopLgsFocus

Description enables or disables the LGS focus loop, which publishing of the LGS trombone offset
(lgsFocus) to control the NCC LGS trombone

Type simple
Command Name loopLgsFocus
Parameters (in) Field Description Type Units Requir

ed
enable indicates whether to enable or disable the

LGS focus loop
boolean yes

Parameters (out)

Status values
affected

Precondition:
 state.cmd = READY
 loop.ready = true
 lgsState.enable[{at least one}] = true
Execution:
 state.cmd = BUSY
At Completion:
 state.cmd = READY
 if {input enable} = true, then loop.lgsFocus != IDLE
 if {input enable} = false, then loop.lgsFocus = IDLE

103

Action and Response

This command enables or disables the LGS focus loop, which is publishing the LGS focus offset
(lgsFocus.

While the focus error is above the LGS focus threshold (as set in the config file) the focus loop
state will be ACQUIRE. Once the focus error has dropped below the threshold, the focus loop
state will change to LOCK. Note that if the sodium layer estimate and, therefore, prepositioning
of the LGS trombone is sufficient, then the initial focus should be below the threshold, and focus
loop will be locked immediately. If the LGS focus loop is not IDLE, an enable request will be a no-
op.

7.1.7 integratorControl

Description Control the SRT integrators
Type simple
Command Name integratorControl
Parameters (in) Field Description Type Units Required

name Integrator name (e.g., LO Pipeline or HO
Pipeline)

string yes

Control Start, stop, resume or reset enum
{START |
STOP |
RESUME |
RESET}

yes

Parameters (out)

Status values
affected

Precondition:
 state.cmd = READY
 loop.ready = true
Execution:
 state.cmd = BUSY
At Completion:
 state.cmd = READY

Action and Response

Start, stop, reset, or resume the integrator defined.

104

7.1.8 loopLowTier0

Description enables or disables Tier 0, the low-order loop using the NGS to control TT and focus
Type simple
Command Name loopLowTier0
Parameters (in) Field Description Type Units Requir

ed
enable indicates whether to enable or disable the

Tier 0 loop
boolean yes

Parameters (out)

Status values
affected

Precondition:
 state.cmd = READY
 loop.ready = true
 loop.tier1 = IDLE
 loop.tier2[] = IDLE | INACTIVE
 calibWc.override = false
Execution:
 state.cmd = BUSY
At Completion:
 state.cmd = READY
 if {input enable}, then loop.lo != IDLEloop.tier0 != IDLE
 if {input !enable}, then loop.lo = IDLEloop.tier0 = IDLE

Action and Response

This command enables or disables Tier 0, the low-order loop using the NGS to control TT and
focus.

This command is intended to be used as an optional first step in low-order acquisition.

If the Tier 1 and/or Tier 2 loops are already closed, or are acquiring, this command cannot be
executed and will return an error. If either Tier 1 or 2 loops are closed while Tier 0 is active, then
a hand-off procedure is triggered and the Tier 0 loop will be opened.

Disabling the Tier 0 loop merely stops the NGS update of low-order loop and does not impact any
other NGS operation.

7.1.9 loopLowTier1

Description enables or disables Tier 1, the low-order loop using the Tier 1 detector, i.e. the LO TTF
detector

Type simple
Command Name loopLowTier1
Parameters (in) Field Description Type Units Requir

ed
enable indicates whether to enable or disable the

Tier 1 loop
boolean yes

Parameters (out)

105

Status values
affected

Precondition:
 state.cmd = READY
 loop.ready = true
 calibWc.override = false
 if {loop.tier1 == OIWFS*}, then oiwfsState.acqTable[OIWFS*] = true
Execution:
 state.cmd = BUSY
At Completion:
 state.cmd = READY
 if {input enable}, then loop.lo != IDLEloop.tier0 = IDLEloop.tier1 != IDLE
 if {input !enable}, then loop.tier1 = IDLEloop.tier3[] = IDLE | INACTIVEloop.tier3f = IDLE |
INACTIVE

Action and Response

This command enables or disables the low-order loop which applies low-order correction errors
to the control path from the Tier 1 detector, i.e. the LO TTF detector.

Enabling this loop triggers the Tier 1 acquisition process that steps through the Tier 1 acquisition
table. While stepping through this table, the Tier 1 loop state is set to ACQUIRE. Once the
acquisition process is complete the state is set to LOCK.

If the Tier 0 loop is closed, then a hands-off procedure is performed to transition TTF control from
the NGS to the Tier 1 detector. If the NGS is the Tier 1 detector, then this hands-off procedure is
a no-op.

If enabled, and the Tier 1 detector is already acquiring or locked, this command is a no-op.
Additionally, if the Tier 1 detector is the NGS then the ACQUIRE state is skipped since the NGS
does not have an acquisition procedure. If the NGS is configured as the Tier 1 detector, disabling
Tier 1 merely stops the NGS control in the low-order path and does not impact any other NGS
operation.

Disabling Tier 1 will also disable Tier 3.

7.1.10 loopLowTier2

Description enables or disables Tier 2, the low-order loop using the Tier 2 detectors, i.e. the LO TT/TTF
detectors

Type simple
Command Name loopLowTier2
Parameters (in) Field Description Type Units Requir

ed
enable indicates whether to enable or disable the

Tier 2 loop
boolean yes

Parameters (out)

Status values
affected

Precondition:
 state.cmd = READY
 loop.ready = true
 calibWc.override = false
 if {loop.tier2[] == ODGW*}, then odgwState.acqTable[ODGW*] = true

106

 if {loop.tier2[] == OIWFS*}, then oiwfsState.acqTable[OIWFS*] = true
Execution:
 state.cmd = BUSY
At Completion:
state.cmd = READY
 if {input enable}, then if {at least one mode.tier2[] != NONE}, then loop.lo != IDLEloop.tier0 =
IDLEloop.tier2[] != IDLE
 if {input !enable}, then loop.tier2[] = IDLE | INACTIVEloop.tier3[] = IDLE | INACTIVEloop.tier3f
= IDLE | INACTIVE

Action and Response

This command enables or disables the low-order loop which apples low-order correction errors to
the control path from the Tier 2 detectors, i.e. the LO TT/TTF detectors.

Enabling this loop triggers the Tier 2 acquisition process that steps through the Tier 2 acquisition
tables. While stepping through these tables, the Tier 2 loop is set to ACQUIRE. Once the
acquisition process is complete the state is set to LOCK.

If enabling the Tier 2 loop but the detector is inactive (mode.tier2[] = NONE), then that detector is
skipped and the corresponding Tier 2 state will be INACTIVE. If a Tier 2 detector is already
acquiring or locked, this command is a noop for that detector and will proceed to the next Tier 2
detector.

If the Tier 0 loop is closed, then a hands-off procedure is performed to transition TT/TTF control
from the NGS to the Tier 2 detector(s). If the NGS is the Tier 2 detector, then this hands-off
procedure is a no-op and will proceed to the next Tier 2 detector. If NGS in configured as a Tier
2 detector then disabling Tier 2 merely stops the NGS control in the low-order path, and does not
impact any other NGS operation.

Disabling Tier 2 will also disable Tier 3.

7.1.11 loopLowTier3

Description enables or disables Tier 3, the low-order loop using the Tier 3/3F detectors, i.e. the LOT
detectors

Type simple
Command Name loopLowTier3
Parameters (in) Field Description Type Units Requir

ed
enable indicates whether to enable or disable the

Tier 3 loop
boolean yes

Parameters (out)

Status values
affected

Precondition:
 state.cmd = READY
 loop.ready = true
 loop.tier1 != IDLE
 loop.tier2[] != IDLE
 calibWc.override = false

107

 if {loop.tier3[] == ODGW*}, then odgwState.acqTable[ODGW*] = true
 if {loop.tier3[] == OIWFS*}, then oiwfsState.acqTable[OIWFS*] = true
 if {loop.tier3f == OIWFS*}, then oiwfsState.acqTable[OIWFS*] = true
Execution:
 state.cmd = BUSY
At Completion:
 state.cmd = READY
 if {input enable}, then loop.lo != IDLEloop.tier3[] != IDLEloop.tier3f != IDLE
 if {input !enable}, then loop.lo != IDLEloop.tier3[] = IDLE | INACTIVEloop.tier3f = IDLE |
INACTIVE

Action and Response

This command enables or disables the low-order loop which applies low-order correction errors
to the control path from the Tier 3 and Tier 3F detectors, i.e., the LOT detectors.

Enabling this loop triggers the Tier 3 and Tier 3F acquisition process that steps through the
acquisition tables. While stepping through these tables, the Tier 3 loop state is set to ACQUIRE.
Once the acquisition process has been completed the state is set to LOCK.

Tier 3 can only be closed after Tier 1 and all active Tier 2 loops have been started, however Tier
3 acquisition will not start until after Tier 1 & 2 detectors have completed their acquisition
(loop.tier1 = LOCK and loop.tier2[] = LOCK | INACTIVE). Therefore, if there are no active Tier 2
detectors, only Tier 1 must be acquired before closing Tier 3 loops.

If enabling is requested and a Tier 3 or 3F detector is inactive (mode.tier3[] = NONE or mode.tier3f
= NONE), that detector is skipped and the corresponding Tier state will be INACTIVE. If a Tier 3
detector is already acquiring or locked, this command is a no-op for that senor and will proceed
to the next Tier 3 detector.

Enabling the Tier 3 loop will set the LO path filter to a high-pass filter, and the LOT path filter to a
low-pass filter. Conversely, disabling Tier 3 will set the low-order mode filter to an all-pass filter,
and the low-order truth filter to be an all-stop filter.

108

7.1.12 paramConfigSetSRT

Description Set or save SRT configuration parameters, used for engineering purposes
Type simple
Command Name paramConfigSetSRT
Parameters (in) Field Description Type Units Required

set If set, this will set the SRT parameter,
otherwise it will save it to file

boolean yes

param Configuration parameter identifier string yes

value New value for the specified parameter as
a string

string

file Filename to write to when save is selected
Parameters (out)

Status values
affected

Precondition:
 state.cmd = READY
 loop.ready = true
Execution:
 state.cmd = BUSY
At Completion:
 state.cmd = READY

Action and Response

Set/save SRT configuration parameters, including reconstructor parameters and reconstructor
mode (i.e. MCAO, GLAO, or LTAO mode).

7.2 COMMANDS SPECIFIC TO ARCHITECTURE

7.2.1 loopLgsDither

Description enables or disables LGS dithering

Type simple
Command Name loopLgsDither
Parameters (in) Field Description Type Units Requir

ed
enable indicates whether to enable or disable the

LGS Dithering loop
enum: (CP, NCP,
NONE)

yes

Parameters (out)

Status values
affected

Precondition:
 state.cmd = READY
 loop.ready = true
 lgsState.enable[{at least one}] = true
Execution:

109

 state.cmd = BUSY
At Completion:
 state.cmd = READY
 loop.lgsDither = {input enable}
 if {input enable == NONE and lgsState.algo == MF_COG | MF_UPDATE}, then lgsState.algo
= COG_STATIC | MF_STATIC

Action and Response

This command enables or disables LGS dithering.

If non-common path (NCP) dithering is selected, then the RTC assumes that LGSF has, or will
be, instructed to dither the LGS FSMs. The RTC will then listen to the LGS FSM sensed positions
stream from the LGSF and estimate the dither signal for optimization and removal from the LGS
WFS gradients. If the LGS TT loop is open (i.e. loop.lgsTt[] == IDLE), then the RTC will send the
current LGSF FSM command, as stored in the FSM integrator or Kalman filter, to trigger the LGSF
FSM sensed position response.

If common path (CP) dithering is selected, then the CP LGS dither signal (tip/tilt) is applied to
DM0. The CP dither signal is applied to the actuator commands sent to the DM. If the High and
Low-Order loops are stopped (i.e. loop.ho = IDLE and loop.lo = IDLE) before or during the
application of the CP LGS dither signal, the dither signal is superimposed on the current DM0
shape. This is taken from what is stored in the main wavefront corrector integrator. This dither
signal is completely independent of the NGS dither signal described in the loopNgsDither
command.

If NONE is selected, then the RTC will not dither DM0 and it will ignore the dither signal applied
to the LGSF FSMs. If the LGS WFS gradient optimization algorithm is set to matched filter
optimization (i.e. lgsState.algo == MF_COG | MF_UPDATE) and the dithering is disabled, then
the LGS WFS gradient optimization is halted (i.e. lgsState.algo == COG_STATIC | MF_STATIC).

7.2.2 loopTwfs

Description enables or disables the TWFS loop which updates the LGS WFS TWFS/MFU reference
vector based on NGS measurements

Type simple
Command Name loopTwfs
Parameters (in) Field Description Type Units Requir

ed
cntrl indicates whether to enable or disable the

TWFS loop
boolean yes

Parameters (out)

Status values
affected

Precondition:
 state.cmd = READY
 loop.ready = true
 lgsState.enable[{at least one}] = true
Execution:
 state.cmd = BUSY
At Completion:
 state.cmd = READY

110

 if {input enable}, then loop.twfs != IDLE
 if {input !enable}, then loop.twfs = IDLE

Action and Response

This command enables or disables the TWFS loop which updates the LGS WFS TWFS/MFU
reference vector based on NGS measurements.

If enabled, the TWFS portion of the TWFS/MFU reference vector is updated based on NGS
measurements. If the TWFS loop is not IDLE, an enable request will be a no-op. Note that the
MFU portion of the TWFS/MFU reference vector is updated independently, which is enabled when
LGS MF are being built/updated (i.e. lgsState.algo = MF_COG | MF_UPDATE).

Disabling the TWFS loop does not reset the TWFS/MFU reference vector stored in the internal
integrator, but merely stops any further TWFS updates from NGS measurements. To reset the
TWFS/MFU reference vector, use the command loopParamReset.

Disabling the TWFS reference vector merely stops updating the TWFS reference vector and does
not impact any other NGS operation.

7.2.3 loopNgsDither

Description enables or disables NGS dithering

Type simple
Command Name loopNgsDither
Parameters (in) Field Description Type Units Requir

ed
enable indicates whether to enable or disable the

NGS Dithering loop
enum: (CP, NCP,
NONE)

yes

Parameters (out)

Status values
affected

Precondition:
 state.cmd = READY
 loop.ready = true
 ngsState.enable[{at least one}] = true
Execution:
 state.cmd = BUSY
At Completion:
 state.cmd = READY
 loop.ngsDither = {input enable}
 if {input enable == NONE and ngsState.algo == MF_COG | MF_UPDATE}, then ngsState.algo
= COG_STATIC | MF_STATIC

Action and Response

This command enables or disables NGS dithering.

If non-common path (NCP) dithering is selected, then the RTC assumes that NCC has, or will be,
instructed to dither the NGS FSM. The RTC will then listen to the NGS FSM sensed position
stream from the NCC and estimate the dither signal for optimization and removal from the NGS
gradients.

111

If common path (CP) dithering is selected, then the CP NGS dither signal is applied to DM0. The
CP dither signal is applied to the actuator commands sent to the DM. If the High and Low-Order
loops are stopped (loop.ho=IDLE & loop.lo=IDLE) before or during the application of the CP dither
signal, the dither signal is superimposed on the current DM0 shape, as stored in the main
wavefront corrector integrator. This dither signal is completely independent of the LGS dither
signal described in the loopLgsDither command.

If NONE is selected, then the RTC will not dither DM0 and will ignore the NGS FSM position
stream. If the NGS gradient optimization algorithm is set to optical gain optimization
(oiwfsState.algo == COG_UPDATE) and the dithering is disabled, then the NGS gradient
optimization is halted (oiwfsState.algo == COG_STATIC).

7.2.4 offloadOiwfsPoa

Description enables or disables offloading to the OIWFS POAs
Type simple
Command Name offloadOiwfsPoa
Parameters (in) Field Description Type Units Requir

ed
enable indicates whether to enable or disable the

OIWFS POA offloading loop. The array is
ordered.

Array[3] of
boolean

yes

time timestamp indicating when the offload
stage should change

double TAI /
PTP

no

Parameters (out)

Status values
affected

Precondition:
 state.cmd = READY
 loop.ready = true
Execution:
 state.cmd = BUSY
At Completion:
 state.cmd = READY
 if {input enable}, then loop.oiwfsPoa[] != IDLE
 if {input !enable}, then loop.oiwfsPoa[] = IDLE

Action and Response

This command enables or disables offloading to the OIWFS POAs.

Normally the POA offload will only be activated for OIWFSs in Tier 1 and 2. However, to facilitate
calibration procedures, the POA offloading can be enabled whenever the corresponding OIWFS
is sending pixels to the RTC.

If enabled, and the OIWFSs have not acquired their guide stars, the acquisition process is started.
If the guide stars are already acquired, or are acquiring as a result of Tiers 1 or 2 being enabled,
then the acquisition process is allowed to complete.

112

When OIWFS POA offloading is enabled, the RTC will publish the corresponding POA offloading
parameter (oiwfsAPoa, oiwfsBPoa, or oiwfsCPoa). Whenever the offloading state
(loop.oiwfsPoa[]) transitions into the ACTIVE state, the corresponding LPF will be reset.

Disabling the POA offloading merely stops any offloading sent to the POA, and does not impact
any other OIWFS operation.

7.2.5 ngsTelDither

Description sets or clear the flag indicating that the telescope is performing a dither
Type simple
Command Name ngsTelDither
Parameters (in) Field Description Type Units Required

dither indicates whether the telescope is
dithering or not

boolean yes

gain gain applied to the NGS gradients while
the telescope is performing a dither

double no

time timestamp indicating when the specified
dither flag takes effect

double TAI /
PTP

no

Parameters (out)

Status values
affected

Precondition:
 state.cmd = READY
 loop.ready = true
Execution:
 state.cmd = BUSY
At Completion:
 state.cmd = READY
 oiwfsState.telDitherFlag = {input dither}
 if {input gain is specified}, then oiwfsState.telDitherGain = {input gain}
 else oiwfsState.telDitherGain = {gain from config file}

Action and Response

This command sets or clear the flag indicating that the telescope is performing a dither.

While the telescope is dithering, the NGS gradients will be scaled by a ≤1 gain. When the telescope
is not dithering the gradient gain will be unity.

The gain input can only be specified when the dither input is set to true, otherwise the command
will be rejected.

If the gain input is not specified, then the NGS telescope dither gradient gain from the RTC
configuration file is used, otherwise the specified value is used instead of the value from the
configuration file.

113

7.2.6 guideStarHandOff

Description disables or (re-)enables the NGS or a OIWFS or a ODGW a guide star for a hand-off
procedure during non-sidereal tracking

Type simple
Command Name guideStarHandOff
Parameters (in) Field Description Type Units Required

detector select the detector used enum: (NGS,
OIWFSA,
OIWFSB,
OIWFSC,
ODGW1,
ODGW2,
ODGW3,
ODGW4)

yes

disable indicates whether to disable or (re)enable
the detector for guide start hand-off

Boolean yes

Parameters (out)

Status values
affected

Precondition:
 state.cmd = READY
 loop.ready = true
 oiwfsState.enable[{input detector}] != NONE
 odgwState.enable[{input detector}] = true
Execution:
 state.cmd = BUSY
At Completion:
 state.cmd = READY
 if {input detector == NGS} then oiwfsState.handOff = {input disable}
 oiwfsState.handOff[{input detector}] = {input disable}
 odgwState.handOff[{input detector}] = {input disable}

Action and Response

This command disables or (re-)enables the NGS, an OIWFS, or an ODGW guide star for a hand-
off procedure for during non-sidereal tracking.

When disabled, the RTC temporarily ignore the detector stream, treating it as a loss of
measurement, without raising alarms. When (re-)enabled, the RTC will attempt to acquire the guide
star following the standard procedure.

114

7.2.7 rtsDelete

Description deletes data stored on the RTS, including PSFR data and nightly telemetry
Type simple
Command Name rtsDelete
Parameters (in) Field Description Type Units Required

psfr Delete all PSFR data that is older than
the specified number of hours. A value of
zero will delete all PSFR data (TBC)

integer hours no

telem Delete all nightly telemetry data that is
older then the specified number of hours.
A value of zero will delete all nightly
telemetry data (TBC)

integer hours no

tag Delete tagged data stored on the RTS
(TBC)

string TBD no

Parameters (out)

Status values
affected

Precondition:
 state.cmd = READY
 loop.ready = false
Execution:
 state.cmd = BUSY
At Completion:
 state.cmd = READY

Action and Response

This command deletes data stored on the RTS, including PSFR data and nightly telemetry.

7.2.8 activateSRT

Description This will activate different areas of the SRT for engineering purposes
Type simple
Command Name activatesSRT
Parameters (in) Field Description Type Units Required

enable indicates whether to enable or disable the
SRT

boolean yes

val Generic field to be used for debugging string
Parameters (out)

Status values
affected

Precondition:
 state.cmd = READY
 loop.ready = true
Execution:
 state.cmd = BUSY
At Completion:
 state.cmd = READY

115

Action and Response

This will activate a portion of the SRT for debugging purposes during build. This may include
processing of frames independent of the HRT.

7.3 STATUS

The following are status values that may be promoted to the external interface, but currently are
not.

Table 7-1 – Status structure specific to architecture

Status name Desc Block/Process/
Pipeline

Tier1 Tier 1 detector assignment enum: (NGS,
OIWFSA,
OIWFSB,
OIWFSC)

tier2 Tier 2 detector assignment. The array is ordered Tier 2
[A B].

array[2] of enum:
(NONE, NGS,
OIWFSA,
OIWFSB,
OIWFSC,
ODGW1,
ODGW2,
ODGW3,
ODGW4)

tier3 Tier 3 detector assignment. The array is ordered Tier 3
[A B C D].

array[4] of enum:
(NONE,
OIWFSA,
OIWFSB,
OIWFSC,
ODGW1,
ODGW2,
ODGW3,
ODGW4)

tier3f Tier 3F detector assignment enum: (NONE,
OIWFSA,
OIWFSB,
OIWFSC)

psfrDataReady An event signaling the PSFR that new data is ready to
be processed

m1Scallop Primary mirror scalloping mode

odgwImage ODGW image size and rotation.

Arrays are ordered as ODGW [1 2 3 4].

116

The size is defined by the widths of the elliptical
Gaussian image, while the rotation defines the angle
between the ellipse σ1 axis and the local probe
coordinate system X axis.

The ellipticity information is indicative of ADC errors
and is published as a diagnostic or potentially as an
error signal to adjust the ADC.

oiwfsState OIWFS state. Arrays are ordered OIWFS [A B C].

odgwState ODGW state. Arrays are ordered ODGW [1 2 3 4].

oiwfsImage OIWFS image size and rotation.

The size is defined by the widths of the elliptical
Gaussian image, while the rotation defines the angle
between the ellipse σ1 axis and the local probe
coordinate system X axis.

Arrays are ordered OIWFS [1 2 3].

oiwfs1Poa OIWFS 1 POA offset (oPOA).

The RTC publishes OIWFS residual probe position
error values when performing probe offloading.

Discussion: The primary use case for probe offloading
is observing modes for which low-frequency TT truth is
determined exclusively from ODGWs; residual errors
reflect drifts in the OIWFS probes with respect to the
IRIS Imager in this case.

Discussion: Probe offloading will be used for calibration
purposes so that the RTC can directly position the
probes over calibration sources itself.

Discussion: Probe offloading may be useful while
performing closed-loop dithering with the probes. If
there is a large error between the TCS position
demands and the actual guide star locations, residual
pointing errors may saturate the TTS. In this case, this
offloading mechanism may be used to “self-guide” the
probes, keeping the loops closed.

Discussion: The parameter oiwfs1Poa will be updated
at the specified rate. When the rate parameter changes
all subsequent updates of oiwfs1Poa will occur at that
new rate. A rate of 0 Hz means the RTC will no longer
send subsequent offload parameter updates to IRIS.
However at some point in future, the rate parameter
may change again to a non-zero value, and the offload
parameter updates will resume at the new rate. This
rate will depend on the steady-state rate of low-order
TT rate in the RTC.

117

oiwfs2Poa OIWFS 2 POA offset (oPOA).

The RTC publishes OIWFS residual probe position
error values when performing probe offloading.

Discussion: See discussion and full description of
equivalent attributes in oiwfs1Poa.

oiwfs3Poa OIWFS 3 POA offset (oPOA).

The RTC publishes OIWFS residual probe position
error values when performing probe offloading.

Discussion: See discussion and full description of
equivalent attributes in oiwfs1Poa.

oiwfsState OIWFS state. Arrays are ordered OIWFS [A B C].

Table 7-2 – Notable Events specific to architecture

Event Block Description

NGS injected dither
signal timeout

Low order NGS
processing Injected dither signal is late

OIWFS<A..C> pixel
datagram out of order

Low order NGS
processing

At least one OIWFS pixel UDP
datagram was received out of order.

OIWFS<A..C> pixel
datagram CRC error

Low order NGS
processing

A bad CRC was detected in at least
one OIWFS pixel UDP datagram.

OIWFS<A..C> low-flux Low order NGS
processing Insufficient flux detected on OIWFS.

OIWFS<A..C> guard row Low order NGS
processing Guide star detected in gruad row.

missing ODGW<1..4>
pixel datagram

Low order NGS
processing

At least one ODGW pixel UDP
datagram was missing from the frame.

ODGW<1..4> pixel
datagram out of order

Low order NGS
processing

At least one ODGW pixel UDP
datagram was received out of order.

ODGW<1..4> pixel
datagram CRC error

Low order NGS
processing

A bad CRC was detected in at least
one ODGW pixel UDP datagram.

ODGW<1..4> low-flux Low order NGS
processing Insufficient flux detected on ODGW.

ODGW<1..4> guard row Low order NGS
processing Guide star detected in gruad row.

missing HO DM vector
datagram

High order
reconstruction

At least one HO DM vector UDP
datagram was missing from the frame.

