You are in: Instruments > MIR > MIR Observing Strategies |
Mid-Infrared Observing Strategies |
On this page we describe the principal observing and calibration issues that users of Gemini's mid-IR instruments should consider when planning their programs and writing their proposals. We recommend that proposers weigh the importance of each issue to their program's scientific goals and formulate their observing plans accordingly. For Michelle and T-ReCS, the principal concerns are the relatively small field of view, the need to chop and nod, and the restricted chopping amplitude. A secondary concern is astrometric accuracy.
Phase I proposals should briefly outline the observing plan and necessary special calibrations in order to justify the program's feasibility and the observing time request - remember that time must be included for any calibration observations not included in the baseline calibrations. Phase II programs should contain complete details on the observing sequences, including all calibrations.
A high-quality observation may also require supporting data for photometric calibration, point-spread function characterization, and so forth. Ideally, every type of calibration would be available for each science observation. This is difficult in practice because of the significant telescope time required to take all possible data, but thankfully only certain calibrations are usually needed to obtain a specific scientific result. For example, while a program to measure the spectral energy distribution of bright circumstellar disk star may require careful photometric calibrations and airmass corrections to obtain high accuracy, a program to image an extremely faint galaxy with expected S/N < 10 would probably not benefit from such an accurate calibration: most of the available telescope time is best spent integrating on the science target. In order to maximise the scientific return from limited time allocations, observing programs should contain only those calibrations that are needed to achieve the desired science.
For each issue, we briefly describe two cases for which the priority of the issue is "Low" and "High". Assigning a "Low" priority to a certain issue typically means that no special procedures are required or that baseline calibrations are acceptable. A "High" priority indicates that the issue needs careful attention and perhaps special observations. (Of course, the issues will likely have intermediate levels of priority for many programs.) Note that these "Low" and "High" priority labels are not reflected in the OT but are guidelines for creating either Phase I or Phase II files. One cannot simply ask for "High" priority astrometry, for example, and leave the details to the astronomer doing the observations at the telescope. If one wants more attention paid to a particular aspect of the calibrations one has to set up the associated observations in the phase II file and allow time for this in one's program.
It is also useful to provide details in NOTES in any phase II file to guide the astronomer who will be carrying out the queue observations. In general more detail of what is wanted and how the observations should be carried out is better. Another point to remember is that in queue observing a series of observations will not necessarily all be carried out on the same night or in any particular order, unless this was specifically requested in the original proposal. Particularly for band 3 programs it is very unlikely that all targets will be observed at optimum airmass or that all the observations of a given target will be done at once unless the observations are quite brief. We recommend that observers keep these factors in mind when creating a phase II file.
In addition to the issues discussed below, PIs need to consider the weather conditions required for the observations. In particular, Q-band observations are generally much more sensitive to the water vapour level than are N-band observations. Although there are a small number of very bright targets that can be observed in Q-band even in relatively wet conditions, nearly all Q-band observations need to be done in conditions of very low water vapour. The integration time calculators can be used to investigate the effect of weather conditions on signal-to-noise ratios. Some guidelines as to the sensitivity of different filters to atmospheric water and ozone are given here, and requirements for imaging polarimetry are discussed here. The observing condition constraints for queue programmes with all instruments are defined here in terms of the percentile bins used for scheduling observations.
Following the duscussion of individual issues, we present observing strategies for several example science programs. For each program we rank the priority of each observing issue and discuss a specific strategy to make the best use of telescope time to meet the important science goals. We feel that many programs can be developed based on these examples; if your program does not seem to fit any of the examples, then perhaps Gemini staff should be contacted for advice.
A characteristic of the Raytheon SBRC arrays used in Michelle and T-ReCS (and the Subaru mid-IR instrument, COMICS) are level drop phenomena (a.k.a the "hammer effect") where the channel of the detector where the target is located has a depressed response for the part of the detector that is read-out after a bright object (see Sako et al. 2003, PASP 115 1407 [ADS abstract] for a detailed description and examples). On the difference images from chopping this shows up as a negative streak above the target on the image, or as a depressed response in every channel of the array at the same row as the bright source. In the other chop position the negative image of the target may also cause a similar effect. If the chopping for such a target is chosen such that the negative images are along a detector row or column from the positive image in the difference images, the result will be two or three interacting streaks. An example of the effect is shown here for an 8 Jy (at 12 microns) Cohen standard imaged with Michelle in the semi-broad N' filter.
By chopping at an angle, rather than along the rows or the columns the streak from the negative beam will not interact with that from the positive beam. This is important when searching for low-level structure around a bright target. In addition if it is known that there is low-level structure in the N-S or E-W directions in a target, it would be useful to rotate the array so that this emission will be oriented at roughly 45 degrees and be out of the region of the streaks as much as possible. Alternatively, the chop angle can be set to be along the short axis of the array and with an amplitude of 15 arcseconds. Then, as long as the object is smaller than 3 arcseconds in radius, the negative images will be off the array.
The hammer effect is always present at a very small fraction of the peak flux (~0.1% in the four-point sampling mode used with T-ReCS). If the noise level is below that value, then the effect becomes visible. The exact ratio varies with the frame rate, flux incident on the detector, etc., so it is not easy to give a specific value for the flux density at which the hammer effect is seen. However, for sources brighter than 10 Jy or so, and/or when accurate knowledge of low-level PSF structure is important to the goals of the programme, the chopping should be set up as described above to minimise the impact of the hammer effect. The threshold is higher for the Qa filter and in polarimetry mode (where the reduced throughput of the waveplates diminishes the flux reaching the detector).
The basic observing strategy for targets in crowded fields should
be noted in the Phase I proposal, in order to justify the feasibility
of the proposed observations. The precise chop and nod settings for
each target should be defined in Phase II.
The required precision of the photometric calibration.
For targets of intermediate brightness, the PSF star(s) should be chosen to also be of intermediate brightness (of order 10 Jy at N-band, somewhat brighter for Q-band) so that a good PSF is obtained in a short time. Very bright sources cause some low-level streaking, the "hammer effect" along the rows and columns which distorts the PSF at low levels.
Any special PSF calibration requirements should be described in the Phase I proposal in order to justify the proposal's feasibility and the observing time request, and extra time added for these calibrations as appropriate. The precise sequence of science target and PSF-reference star observations should be defined in Phase II.
Imaging flat-fields can in principle be derived from observations of the sky at different airmasses. However we have been unable to find a satisfactory method of creating imaging flats that does not also significantly increase the noise level in the images. As the detector response appears to be intrinsically fairly flat over the field of view we therefore do not recommend that PIs attempt flat-fielding of Michelle and T-ReCS images.
For spectroscopy with Michelle, flat field frames are taken by looking at a surface inside Michelle's calibration unit (previously, the primary mirror instrument cover was used). These have been found to be quite stable and reproducible for low resolution spectroscopy, but the fringing appears to vary somewhat with time in the higher resolution modes. Flat and bias observations are taken for each science observation. Flats and bias frames are not taken for spectroscopy with T-ReCS.
Note that the best PSF accuracy entails frequent calibration images which are charged to the program since they are in excess of standard baseline calibrations. These overheads must be accounted for in the original time request.
Last update 2007 May 22; Jim De Buizer